上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 666-674.doi: 10.16183/j.cnki.jsjtu.2023.225

• 机械与动力工程 • 上一篇    下一篇

基于热-流-固耦合的齿轮箱稳态热性能研究

刘逸, 张开林(), 邵帅, 向泓旭   

  1. 西南交通大学 轨道交通运载系统全国重点实验室,成都 610031
  • 收稿日期:2023-06-02 修回日期:2023-07-24 接受日期:2023-08-28 出版日期:2025-05-28 发布日期:2025-06-05
  • 通讯作者: 张开林,研究员;E-mail:zhangkailin@swjtu.cn.
  • 作者简介:刘 逸(1999—),硕士生,从事计算流体动力学研究.
  • 基金资助:
    国家自然科学基金(U2268211);大功率交流传动电力机车系统集成国家重点实验室开放课题(R111720H01385)

Investigation on Steady-State Thermal Performance of Gear Box Based on Thermal-Fluid-Solid Coupling

LIU Yi, ZHANG Kailin(), SHAO Shuai, XIANG Hongxu   

  1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2023-06-02 Revised:2023-07-24 Accepted:2023-08-28 Online:2025-05-28 Published:2025-06-05

摘要:

为准确预测轨道交通传动系统齿轮箱的温度分布,采用一种基于计算流体动力学(CFD)的混合时间尺度耦合法对齿轮箱进行仿真分析.对齿轮箱的内部流场与温度场同时进行数值模拟,通过数据传输实现齿轮箱流场与温度场的实时双向耦合,最后根据内部温度场计算结果,通过有限元方法得到箱体温度分布情况.另外,分析转速、浸油深度、喷油润滑等因素对齿轮箱稳态热性能的影响.研究结果表明:该数值模型在温度预测方面具有良好的性能,仿真结果与实验测量值之间的最大相对误差为7.4%.随着转速的增加,齿轮箱温度随之上升;而随着浸油深度的增加,除下箱体底部温度逐渐上升外,其余区域温度均下降.相同转速时,喷油润滑下的箱体最高温度对比飞溅润滑,降低幅度可达14%;且转速越高,冷却效果越明显.

关键词: 热-流-固耦合, 箱体温度场, 混合时间尺度, 润滑方式, 计算流体动力学

Abstract:

In order to accurately predict the temperature distribution of the gearbox of the rail transit transmission system, a mixed timescale coupling method based on computational fluid dynamics (CFD) was adopted to simulate the gearbox. The internal flow field and temperature field of the gearbox were simultaneously simulated, and the real-time two-way coupling between the flow field and temperature field was realized through data transmission. Finally, based on the calculation results of the internal temperature field, the temperature distribution of the gearbox was obtained by using the finite element method. In addition, the effects of rotational speed, immersion depth, injection lubrication, and other factors on the steady-state thermal performance of the gearbox were analyzed. The results show that the numerical model has a good performance in temperature prediction. Moreover, the maximum relative error between the simulation results and the experimental values is 7.4%. With the increase of rotational speed, the temperature of gear box rises accordingly. With the increase of oil immersion depth, except the fact that the bottom temperature of the lower box gradually increases, the temperature of other areas decreases. At the same speed, the maximum temperature of the box under oil injection lubrication can be reduced by up to 14% compared with splash lubrication. In addition, the rotational speed increases, the cooling effect becomes more apparent.

Key words: thermal-fluid-solid coupling, box temperature field, mixed timescale, lubrication mode, computational fluid dynamics (CFD)

中图分类号: