上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 666-674.doi: 10.16183/j.cnki.jsjtu.2023.225
收稿日期:
2023-06-02
修回日期:
2023-07-24
接受日期:
2023-08-28
出版日期:
2025-05-28
发布日期:
2025-06-05
通讯作者:
张开林,研究员;E-mail:zhangkailin@swjtu.cn.
作者简介:
刘 逸(1999—),硕士生,从事计算流体动力学研究.
基金资助:
LIU Yi, ZHANG Kailin(), SHAO Shuai, XIANG Hongxu
Received:
2023-06-02
Revised:
2023-07-24
Accepted:
2023-08-28
Online:
2025-05-28
Published:
2025-06-05
摘要:
为准确预测轨道交通传动系统齿轮箱的温度分布,采用一种基于计算流体动力学(CFD)的混合时间尺度耦合法对齿轮箱进行仿真分析.对齿轮箱的内部流场与温度场同时进行数值模拟,通过数据传输实现齿轮箱流场与温度场的实时双向耦合,最后根据内部温度场计算结果,通过有限元方法得到箱体温度分布情况.另外,分析转速、浸油深度、喷油润滑等因素对齿轮箱稳态热性能的影响.研究结果表明:该数值模型在温度预测方面具有良好的性能,仿真结果与实验测量值之间的最大相对误差为7.4%.随着转速的增加,齿轮箱温度随之上升;而随着浸油深度的增加,除下箱体底部温度逐渐上升外,其余区域温度均下降.相同转速时,喷油润滑下的箱体最高温度对比飞溅润滑,降低幅度可达14%;且转速越高,冷却效果越明显.
中图分类号:
刘逸, 张开林, 邵帅, 向泓旭. 基于热-流-固耦合的齿轮箱稳态热性能研究[J]. 上海交通大学学报, 2025, 59(5): 666-674.
LIU Yi, ZHANG Kailin, SHAO Shuai, XIANG Hongxu. Investigation on Steady-State Thermal Performance of Gear Box Based on Thermal-Fluid-Solid Coupling[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 666-674.
[1] | 高超. 基于热流耦合高速列车齿轮箱温度场的数值研究[D]. 成都: 西南交通大学, 2019: 2-10. |
GAO Chao. Numerical study of temperature field of high speed train gearbox based on heat-fluid coupling[D]. Chengdu: Southwest Jiaotong University, 2019: 2-10 | |
[2] | XUE H, XU H. Simulation calculation of temperature field of gearbox in straddle monorail train[J]. Journal of Physics: Conference Series, 2022, 2174(1): 012074. |
[3] | 陈晓玲, 张武高, 黄智勇, 等. 高速列车运行速度对传动齿轮箱平衡温度的影响[J]. 上海交通大学学报, 2007, 259(9): 1510-1513. |
CHEN Xiaoling, ZHANG Wugao, HUANG Zhiyong, et al. Influence of high-speed train running speed on transmission gear box equilibrium temperature[J]. Journal of Shanghai Jiao Tong University, 2007, 259(9): 1510-1513. | |
[4] | 薛浩. 跨座式单轨列车齿轮箱温度场分析[D]. 北京: 北方工业大学, 2022. |
XUE Hao. Analysis of temperature field in gearbox of straddle monorail train[D]. Beijing: North China University of Technology, 2022. | |
[5] | 徐宏海, 姜久林, 胡袁. 高铁驱动齿轮箱稳态温度场分析建模与仿真[J]. 润滑与密封, 2019, 44(9): 44-49. |
XU Honghai, JIANG Jiulin, HU Yuan. modeling and simulation of steady-state temperature field of high-speed rail drive gear box[J]. Lubrication Engineering, 2019, 44(9): 44-49. | |
[6] | 鲍和云, 范永, 朱如鹏, 等. 齿轮箱浸油润滑流场及温度场仿真分析[J]. 中南大学学报(自然科学版), 2019, 50(8): 1840-1847. |
BAO Heyun, FAN Yong, ZHU Rupeng, et al. Simulation analysis of flow field and temperature field of gearbox immersed lubrication[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1840-1847. | |
[7] | LU F, WANG M, PAN W, et al. CFD-based investigation of lubrication and temperature characteristics of an intermediate gearbox with splash lubrication[J]. Applied Sciences, 2020, 11(1): 352. |
[8] | 林腾蛟, 黄河, 彭建涛, 等. 混合润滑条件下的星形人字齿轮系统温度场[J]. 航空动力学报, 2020, 35(5): 1066-1080. |
LIN Tengjiao, HUANG He, PENG Jiantao, et al. Temperature field of double helical star gear transmission system in mixed lubrication condition[J]. Journal of Aerospace Power, 2020, 35(5): 1066-1080. | |
[9] | DESHPANDE S, JOSHI H, MADHAVAN J, et al. Two-way coupled CFD approach for predicting gear temperature of oil jet lubricated transmissions[J]. SAE International Journal of Commercial Vehicles, 2018, 11: 163-170. |
[10] | DENG X, WANG S, WANG S, et al. Lubrication mechanism in gearbox of high-speed railway trains[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14(4): JAMDSM0054. |
[11] | CHIRANTH S, YANG X, JEFF S, et al. Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(4): 1741-1753. |
[12] | JIANG Y, HU X, HONG S, et al. Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155-164. |
[13] | HU X, WANG A, LI P, et al. Influence of dynamic attitudes on oil supply for bearings and churning power losses in a splash lubricated spiral bevel gearbox[J]. Tribology International, 2021, 159: 106951. |
[14] | COY J, TOWNSEND D, ZARETSKY E. Dynamic capacity and surface fatigue life for spur and helical gears[J]. Journal of Tribology-Transactions of the ASME, 1989, 1: 355-359. |
[15] | LUKE P, OLVER A V. A study of churning losses in dip-lubricated spur gears[J]. Journal of Aerospace Engineering, 1999, 213(5): 337-346. |
[16] | CHANGENET C, VELEX P. A model for the prediction of churning losses in geared transmissions-preliminary results[J]. Journal of Mechanical Design, 2007, 129(1): 128-133. |
[17] | ANDERSON N, LOEWENTHAL S. Design of spur gears for improved efficiency[J]. Journal of Mechanical Design, 1982, 104(4): 767-774. |
[18] | The International Organization for Standardization. Gears-thermal capacity—Part 1: Rating gear drives with thermal equilibrium at 95 ℃ sump temperature: ISO/TR 14179-2[S]. Switzerland: ISO Copyright Office, 2001. |
[19] | 张雨. 城市轨道交通车辆齿轮箱内介质流动及其密封性能研究[D]. 成都: 西南交通大学, 2020. |
ZHANG Yu. Urban rail transit vehicle gear box medium flow and its sealing performance[D]. Chengdu: Southwest Jiaotong University, 2020. | |
[20] | HIDENORI A, HIDEYUKI I, MOTOHIKO N, et al. Computational fluid dynamics simulations and experiments for reduction of oil churning loss and windage loss in aeroengine transmission gears[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(9): 092604. |
[21] | SHAO S, ZHANG K, YAO Y, et al. Investigations on lubrication characteristics of high-speed electric multiple unit gearbox by oil volume adjusting device[J]. Journal of Zhejiang University-SCIENCE A, 2023, 23(12): 1013-1026. |
[22] | LIU H, THOMAS J, THOMAS L, et al. Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2016, 109: 346-354. |
[23] | LI W, PANG D. Investigation on temperature field of surrounding tooth domain with cracked tooth in gear system[J]. Mechanism and Machine Theory, 2018, 130: 523-538. |
[1] | 袁亚琦1, 李世阳1 , 郑佳1, 李明睿2. 基于CFD的气体超声流量计组合式整流器的研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 611-620. |
[2] | 郭海鹏, 邹早建, 李广年. 基于OpenFOAM的螺旋桨紧急倒车工况数值模拟[J]. 上海交通大学学报, 2023, 57(2): 168-176. |
[3] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[4] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[5] | 戴孟祎, 张志豪, 涂佳黄, 韩兆龙, 周岱, 朱宏博. 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报, 2022, 56(12): 1619-1629. |
[6] | 杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
[7] | 徐野, 熊鹰, 黄政. 双桨船螺旋桨空泡脉动压力的试验及数值研究[J]. 上海交通大学学报, 2020, 54(8): 831-838. |
[8] | 夏立, 邹早建, 袁帅, 曾智华. 基于非侵入式混沌多项式法的随机阻曳流CFD模拟不确定度量化[J]. 上海交通大学学报, 2020, 54(6): 584-591. |
[9] | 谢行,任慧龙,陶凯东,冯亿坤. 应用改进流体体积法的楔形体斜向入水研究[J]. 上海交通大学学报, 2020, 54(1): 20-27. |
[10] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[11] | 李亮,解茂昭,贾明,刘宏升. 超临界射流模型的构建及验证[J]. 上海交通大学学报(自然版), 2018, 52(9): 1058-1064. |
[12] | 张磊华a,姚振强a,b,沈洪a,b,成德a,薛亚波a. 环形流道内周向流对摩擦因子的修正公式[J]. 上海交通大学学报(自然版), 2017, 51(1): 46-. |
[13] | 冯松波a,邹早建a,b,邹璐a. KVLCC2船-舵系统斜航水动力数值计算[J]. 上海交通大学学报(自然版), 2015, 49(04): 470-474. |
[14] | 徐博1,张驰1,陈江平1,孙西辉2,马小魁2. 积液型两相流分配器的性能与优化[J]. 上海交通大学学报(自然版), 2015, 49(01): 91-95. |
[15] | 韩龙1,陈阳陵2,王福新1,程用胜1. 高海况机翼波浪地面效应数值模拟与分析[J]. 上海交通大学学报(自然版), 2014, 48(08): 1127-1133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||