上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (9): 1334-1343.doi: 10.16183/j.cnki.jsjtu.2023.048
王于波1, 郝玲2,3(), 徐飞2,3, 陈文彬1, 郑利斌1, 陈磊2,3, 闵勇2,3
收稿日期:
2023-02-13
修回日期:
2023-05-06
接受日期:
2023-05-12
出版日期:
2024-09-28
发布日期:
2024-10-11
通讯作者:
郝 玲,博士,助理研究员;E-mail:haolg@foxmail.com.
作者简介:
王于波(1969—),博士生,正高级工程师,从事电力物联网研究.
基金资助:
WANG Yubo1, HAO Ling2,3(), XU Fei2,3, CHEN Wenbin1, ZHENG Libin1, CHEN Lei2,3, MIN Yong2,3
Received:
2023-02-13
Revised:
2023-05-06
Accepted:
2023-05-12
Online:
2024-09-28
Published:
2024-10-11
摘要:
分布式光伏功率不确定性的量化评估对于配电网安全稳定运行具有重要意义.考虑到不同出力波动模式下功率特性差异显著,为得出适应功率波动模式的预测模型并对功率不确定性进行精细化评估,提出一种分布式光伏集群发电功率波动模式识别与超短期概率预测方法.首先,综合卫星云图和光伏功率数据,通过出力波动的特征提取构建波动模式识别模型,实现对波动规律的挖掘.在此基础上,通过分类建模考虑不同波动模式的可预测性差异及波动模式与预测误差的关联关系,使预测区间宽度能更好地适应预测误差分布特征.由此实现对不同波动模式下功率不确定性的精细化考虑,从而提高概率预测精度,为电网调度提供更多参考,削弱分布式光伏功率强波动性对电力系统的影响.
中图分类号:
王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343.
WANG Yubo, HAO Ling, XU Fei, CHEN Wenbin, ZHENG Libin, CHEN Lei, MIN Yong. Pattern Recognition and Ultra-Short-Term Probabilistic Forecasting of Power Fluctuating in Aggregated Distributed Photovoltaics Clusters[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1334-1343.
[1] | WANG F, ZHEN Z, LIU C, et al. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting[J]. Energy Conversion & Management, 2018, 157: 123-135. |
[2] | WANG F, ZHANG Z Y, LIU C, et al. Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting[J]. Energy Conversion & Management, 2019, 181: 443-462. |
[3] |
王洪坤, 葛磊蛟, 李宏伟, 等. 分布式光伏发电的特性分析与预测方法综述[J]. 电力建设, 2017, 38(7): 1-9.
doi: 10.3969/j.issn.1000-7229.2017.07.001 |
WANG Hongkun, GE Leijiao, LI Hongwei, et al. A review on characteristic analysis and prediction method of distributed PV[J]. Electric Power Construction, 2017, 38(7): 1-9.
doi: 10.3969/j.issn.1000-7229.2017.07.001 |
|
[4] | 王春平. 基于光伏功率预测的分布式能源系统优化[D]. 上海: 上海交通大学, 2020. |
WANG Chunping. Distributed energy system optimization based on photovoltaic power prediction[D]. Shanghai: Shanghai Jiao Tong University, 2020. | |
[5] |
廖启术, 胡维昊, 曹迪, 等. 新能源电力系统中的分布式光伏净负荷预测[J]. 上海交通大学学报, 2021, 55(12): 1520-1531.
doi: 10.16183/j.cnki.jsjtu.2021.244 |
LIAO Qishu, HU Weihao, CAO Di, et al. Distributed photovoltaic net load forecasting in new energy power systems[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1520-1531. | |
[6] | SAINT-DRENAN Y M, GOOD G H, BRAUN M, et al. Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method[J]. Solar Energy, 2016, 135: 536-550. |
[7] | KUSHWAHA V, PINDORIYA N M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast[J]. Renewable Energy, 2019, 140: 124-139. |
[8] | SHENG H M, XIAO J, CHENG Y H, et al. Short-term solar power forecasting based on weighted gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 300-308. |
[9] | 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46(11): 67-74. |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46(11): 67-74. | |
[10] | WANG K J, QI X X, LIU H D. Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225. |
[11] | ALMONACID F, RUS C, PÉREZ-HIGUERAS P, et al. Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks[J]. Energy, 2011, 36(1): 375-384. |
[12] | 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J]. Electric Power, 2022, 55(11): 149-154. | |
[13] | 郑若楠, 李国杰, 韩蓓, 等. 基于加权扩展日特征矩阵的分布式光伏发电日前功率预测[J]. 电力自动化设备, 2022, 42(2): 99-105. |
ZHENG Ruonan, LI Guojie, HAN Bei, et al. Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix[J]. Electric Power Automation Equipment, 2022, 42(2): 99-105. | |
[14] | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM Model[J]. High Voltage Engineering, 2022, 48(11): 4372-4388. | |
[15] | 许彪, 徐青山, 黄煜, 等. 基于藤copula分位数回归的光伏功率日前概率预测[J]. 电网技术, 2021, 45(11): 4426-4435. |
XU Biao, XU Qingshan, HUANG Yu, et al. Day-ahead probabilistic forecasting of photovoltaic power based on vine copula quantile regression[J]. Power System Technology, 2021, 45(11): 4426-4435. | |
[16] | 赵康宁, 蒲天骄, 王新迎, 等. 基于改进贝叶斯神经网络的光伏出力概率预测[J]. 电网技术, 2019, 43(12): 4377-4386. |
ZHAO Kangning, PU Tianjiao, WANG Xinying. et al. Probabilistic forecasting for photovoltaic power based on improved Bayesian neural network[J]. Power System Technology, 2019, 43(12): 4377-4386. | |
[17] | 王继东, 冉冉, 宋智林. 基于改进深度受限玻尔兹曼机算法的光伏发电短期功率概率预测[J]. 电力自动化设备, 2018, 38(5): 43-49. |
WANG Jidong, RAN Ran, SONG Zhilin. Probability forecast of short-term photovoltaic power generation based on improved depth restricted Boltzmann machine algorithm[J]. Electric Power Automation Equipment, 2018, 38(5): 43-49. | |
[18] | 程泽, 刘冲, 刘力. 基于相似时刻的光伏出力概率分布估计方法[J]. 电网技术, 2017, 41(2): 448-455. |
CHENG Ze, LIU Chong, LIU Li. A method of probabilistic distribution estimation of PV generation based on similar time of day[J]. Power System Technology, 2017, 41(2): 448-455. | |
[19] |
李芬, 周尔畅, 孙改平, 等. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
doi: 10.16183/j.cnki.jsjtu.2021.264 |
LI Fen, ZHOU Erchang, SUN Gaiping, et al. A novel weather classification method and its application in photovoltaic power prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. | |
[20] |
吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43(5): 146-155.
doi: 10.19912/j.0254-0096.tynxb.2020-0961 |
JI Xinge, LI Hui, YE Lin, et al. Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 146-155.
doi: 10.19912/j.0254-0096.tynxb.2020-0961 |
|
[21] |
何之倬, 张颖, 郑刚, 等. 基于极限学习机模型参数优化的光伏功率区间预测技术[J]. 上海交通大学学报, 2024, 58(3): 285-294.
doi: 10.16183/j.cnki.jsjtu.2022.338 |
HE Zhizhuo, ZHANG Ying, ZHENG Gang, et al. Interval prediction technology of photovoltaic power based on parameter optimization of extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 285-294. | |
[22] | WANG F, MI Z Q, SU S, et al. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters[J]. Energies, 2012, 5(5): 1355-1370. |
[23] | 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238. |
LÜ Weijie, FANG Yifan, CHENG Ze, et al. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 231-238. | |
[24] | 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567. |
CHEN Zhibao, DING Jie, ZHOU Hai, et al. A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567. | |
[25] | 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复[J]. 中国电机工程学报, 2022, 42(4): 1514-1523. |
JI Deyang, JIN Feng, DONG Lei, et al. Data repairing of photovoltaic power plant based on pearson correlation coefficient[J]. Proceedings of the CSEE, 2022, 42(4): 1514-1523. | |
[26] | 王蔚卿. 基于波动过程模式识别的风速超短期预测模型[D]. 保定: 华北电力大学, 2020. |
WANG Weiqing. An ultra-short-term wind speed forecasting model based on fluctuation process pattern recognition[D]. Baoding: North China Electric Power University, 2020. |
[1] | 李芬, 孙凌, 王亚维, 屈爱芳, 梅念, 赵晋斌. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6): 806-818. |
[2] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[3] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[4] | 陈利跃1,洪道鉴2,何星3,卢东祁2,张乾2,谢妮娜2,徐一洲2,应煌浩2. 基于图卷积网络的分布式光伏实时输出估计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 290-296. |
[5] | 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241. |
[6] | 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55. |
[7] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[8] | 李泽, 钱勇, 臧奕茗, 周小丽, 盛戈皞, 江秀臣. 基于多光谱阵列的C4F7N/CO2混合气体局部放电光学特征分析与诊断[J]. 上海交通大学学报, 2023, 57(9): 1176-1185. |
[9] | 王鹏, 李艳婷, 张宇. 基于在线LASSO VAR和EGARCH模型的风场功率集成概率预测[J]. 上海交通大学学报, 2023, 57(7): 845-858. |
[10] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[11] | 张晗, 韩冬, 刘坦, 黄燕. 碳中和背景下分布式光伏渗透与售电市场耦合机制分析[J]. 上海交通大学学报, 2023, 57(4): 464-472. |
[12] | 王兵, 皮刚, 陈文成, 谢海峰, 施祥玲. 基于深度学习的柔性太阳翼琴铰表面缺陷检测方法[J]. 空天防御, 2023, 6(1): 96-101. |
[13] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[14] | 曾国治, 魏子清, 岳宝, 丁云霄, 郑春元, 翟晓强. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261. |
[15] | 吴庶宸, 戚宗锋, 李建勋. 基于深度学习的智能全局灵敏度分析[J]. 上海交通大学学报, 2022, 56(7): 840-849. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||