上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (5): 552-559.doi: 10.16183/j.cnki.jsjtu.2021.466
所属专题: 《上海交通大学学报》2023年“生物医学工程”专题
收稿日期:
2021-11-18
修回日期:
2022-01-18
接受日期:
2022-01-19
出版日期:
2023-05-28
发布日期:
2023-06-02
通讯作者:
董威
E-mail:wdong@sjtu.edu.cn.
作者简介:
张泽龙(1996-),硕士生,从事生物医学光学成像与多相流研究.
基金资助:
ZHANG Zelong1, ZHANG Yingchao2, WU Bo2, DONG Wei1(), FAN Youben2
Received:
2021-11-18
Revised:
2022-01-18
Accepted:
2022-01-19
Online:
2023-05-28
Published:
2023-06-02
Contact:
DONG Wei
E-mail:wdong@sjtu.edu.cn.
摘要:
激光散斑对比成像是一种大测量范围、实时、高分辨率的光学成像方法.现有研究表明,低灰度级(8位)低分辨率(752像素×480像素)照相机可以有效监测血液等散射介质流动,但散粒噪声大、有效成像区域小等缺点难以通过软件弥补,严重影响成像质量.使用高灰度级(16位)高分辨率(2 048像素×2 048像素)照相机监测血液流动会减慢单帧成像速度,并行计算能使图像处理时间减少1/3.研究借助动物血液流动实验,以成像速度与成像质量为评价标准,对比分析高灰度级高分辨率空间激光散斑对比成像与空间近似激光散斑对比成像(sLSCIa)、时间激光散斑对比成像(tLSCI)的结果.结果表明,高灰度级高分辨率空间激光散斑对比成像并行计算兼顾成像质量与成像速度,可以达到临床实时监测血液流动要求.
中图分类号:
张泽龙, 张颖超, 伍波, 董威, 樊友本. 高灰度级高分辨率激光散斑血流实时成像研究[J]. 上海交通大学学报, 2023, 57(5): 552-559.
ZHANG Zelong, ZHANG Yingchao, WU Bo, DONG Wei, FAN Youben. Real-Time Laser Speckle Imaging of Blood Flow with High Gray Level and High Resolution[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 552-559.
[16] |
RAMIREZ-SAN-JUAN J C, MENDEZ-AGUILAR E, SALAZAR-HERMENEGILDO N, et al. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics[J]. Biomedical Optics Express, 2013, 4(10): 1883-1889.
doi: 10.1364/BOE.4.001883 URL |
[17] |
BANDYOPADHYAY R, GITTINGS A S, SUH S S, et al. Speckle-visibility spectroscopy: A tool to study time-varying dynamics[J]. Review of Scientific Instruments, 2005, 76(9): 093110.
doi: 10.1063/1.2037987 URL |
[1] | 刘洪涛, 梁振宁, 胡文, 等. 基于局部特征点检测与匹配的微悬臂梁变形受力测量方法[J]. 上海交通大学学报, 2013, 47(12): 1842-1847. |
LIU Hongtao, LIANG Zhenning, HU Wen, et al. A method for deformation and force measurement of micro-cantilever based on local feature point detecting and matching[J]. Journal of Shanghai Jiao Tong University, 2013, 47(12): 1842-1847. | |
[2] |
FERCHER A F, BRIERS J D. Flow visualization by means of single-exposure speckle photography[J]. Optics Communications, 1981, 37(5): 326-330.
doi: 10.1016/0030-4018(81)90428-4 URL |
[3] |
TOWLE E L, RICHARDS L M, KAZMI S M S, et al. Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion[J]. Neurosurgery, 2012, 71(5): 1023-1030.
doi: 10.1227/NEU.0b013e31826adf88 pmid: 22843129 |
[4] |
FREDRIKSSON I, LARSSON M. On the equivalence and differences between laser Doppler flowmetry and laser speckle contrast analysis[J]. Journal of Biomedical Optics, 2016, 21: 126018.
doi: 10.1117/1.JBO.21.12.126018 URL |
[5] |
MANNOH E A, THOMAS G, SOLÓRZANO C C, et al. Intraoperative assessment of parathyroid viability using laser speckle contrast imaging[J]. Scientific Reports, 2017, 7: 14798.
doi: 10.1038/s41598-017-14941-5 pmid: 29093531 |
[6] | MANNOH E A, PARKER L B, THOMAS G, et al. Development of an imaging device for label-free parathyroid gland identification and vascularity assessment[J]. Journal of Biophotonics, 2021, 14(6): e202100008. |
[7] |
HEEMAN W, STEENBERGEN W, DAM G V, et al. Clinical applications of laser speckle contrast imaging: A review[J]. Journal of Biomedical Optics, 2019, 24(8): 1-11.
doi: 10.1117/1.JBO.24.8.080901 pmid: 31385481 |
[8] | 李晨曦, 陈文亮, 蒋景英, 等. 激光散斑衬比血流成像技术研究进展[J]. 中国激光, 2018, 45(2): 92-101. |
LI Chenxi, CHEN Wenliang, JIANG Jingying, et al. Laser speckle contrast imaging on in vivo blood flow: A review[J]. Chinese Journal of Lasers, 2018, 45(2): 92-101. | |
[9] | RICHARDS G J, BRIERS J D. Capillary-blood-flow monitoring using laser speckle contrast analysis (LASCA): Improving the dynamic range[J]. Proceedings of SPIE, 1997, 2981: 160-171. |
[10] |
CHENG H Y, YAN Y M, DUONG T Q. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging[J]. Optics Express, 2008, 16(14): 10214-10219.
doi: 10.1364/oe.16.010214 pmid: 18607429 |
[11] |
MIAO P, REGE A, LI N, et al. High resolution cerebral blood flow imaging by registered laser speckle contrast analysis[J]. IEEE Transactions on Bio-Medical Engineering, 2010, 57(5): 1152-1157.
doi: 10.1109/TBME.2009.2037434 pmid: 20142159 |
[12] |
CHENG W M, ZHU X, CHEN X, et al. Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow[J]. IEEE Transactions on Medical Imaging, 2019, 38(7): 1726-1735.
doi: 10.1109/TMI.2019.2896007 pmid: 30714912 |
[13] | YUAN S. Sensitivity, noise and quantitative model of laser speckle contrast imaging[D]. USA: Medford Tufts University, 2008. |
[14] |
SONG L P, ELSON D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis[J]. Biomedical Optics Express, 2013, 4(1): 89-104.
doi: 10.1364/BOE.4.000089 pmid: 23304650 |
[15] | HULTMAN M, FREDRIKSSON I, LARSSON M, et al. A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup[J]. Journal of Biophotonics, 2018, 11(2): e201700069. |
[1] | 管延敏, 杨彩虹, 康庄, 周利. 一种改进GPU加速策略在光滑粒子流体动力学方法中的应用[J]. 上海交通大学学报, 2023, 57(8): 981-987. |
[2] | 张晓慧,柏君励,顾解忡,马宁. 一种不可压缩二维流动的显式逐次超松弛并行算法[J]. 上海交通大学学报, 2019, 53(6): 681-687. |
[3] | 江列霖,杨培中,史超. 基于负载均衡分区法的建筑火灾并行数值模拟及应用[J]. 上海交通大学学报(自然版), 2018, 52(11): 1524-1531. |
[4] | 王小庆a,b,金先龙a,b,曹源a. 大规模输水隧道水锤效应三维数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 98-102. |
[5] | 池子文a,b,张丰a,b,杜震洪a,b,刘仁义a,b. 云环境下基于预分片的遥感数据并行重采样方法[J]. 上海交通大学学报(自然版), 2014, 48(11): 1627-1632. |
[6] | 印桂生1, 王海玲1, 2, 张菁1, 倪军2, 王建3. 快速高效的碰撞检测算法 [J]. 上海交通大学学报(自然版), 2012, 46(06): 962-966. |
[7] | 王建炜, 金先龙, 曹露芬, 张伟伟. 列车载荷下隧道联络通道动态响应的并行计算[J]. 上海交通大学学报(自然版), 2012, 46(04): 591-595. |
[8] | 王建炜, 金先龙, 王新, 张伟伟. 双线隧道联络通道地震响应的并行数值分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1557-1561. |
[9] | 曹露芬,金先龙,吴惠明,杜新光,. 施工中隧道与运输车辆动态耦合的并行计算方法 [J]. 上海交通大学学报(自然版), 2010, 44(11): 1534-1538. |
[10] | 甄希金,武殿梁,朱洪敏,范秀敏. 交互虚拟装配仿真过程中物体间间隙动态计算方法[J]. 上海交通大学学报(自然版), 2010, 44(02): 259-0263. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||