上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (5): 560-569.doi: 10.16183/j.cnki.jsjtu.2022.194
所属专题: 《上海交通大学学报》2023年“生物医学工程”专题
许苑晶1,2, 高海峰3, 吴云成3, 柳毅浩1, 张子砚4, 黄承兰5, 王赞博2, 刘同有2, 王彩萍2, 缪伟强1, 王金武1,2()
收稿日期:
2022-06-06
修回日期:
2022-07-01
接受日期:
2022-07-12
出版日期:
2023-05-28
发布日期:
2023-06-02
通讯作者:
王金武
E-mail:wangjw-team@shsmu.edu.cn
作者简介:
许苑晶(1993-),中级工程师,从事3D打印医疗器械研发与注册研究.
基金资助:
XU Yuanjing1,2, GAO Haifeng3, WU Yuncheng3, LIU Yihao1, ZHANG Ziyan4, HUANG Chenglan5, WANG Zanbo2, LIU Tongyou2, WANG Caiping2, MIAO Weiqiang1, WANG Jinwu1,2()
Received:
2022-06-06
Revised:
2022-07-01
Accepted:
2022-07-12
Online:
2023-05-28
Published:
2023-06-02
Contact:
WANG Jinwu
E-mail:wangjw-team@shsmu.edu.cn
摘要:
通过构建膝关节与定制式增材制造膝关节矫形器有限元模型,模拟膝骨关节炎(KOA)患者佩戴矫形器前后的膝关节生物力学变化,验证矫形器的间室减荷效果,针对矫形器治疗效果开展定量化研究,可用于膝关节矫形器的临床疗效评价.实验经过上海交通大学医学院附属第九人民医院伦理委员会审批通过,招募一名膝骨关节炎的女性,对其膝关节进行光学体表及CT扫描,根据单侧减荷原理设计定制式增材制造膝关节矫形器,通过网格划分、材料赋值、边界设置等步骤,利用ANSYS等软件构建包括膝关节与定制式增材制造膝关节矫形器有限元模型,沿下肢负重轴方向对膝关节施加 1 100 N的压缩载荷,进行仿真及应力分析,研究定制式增材制造膝关节矫形器对膝关节间室的减荷效果.针对KOA特性进行有限元分析,验证软骨、韧带及下肢皮肤对膝关节承载能力的影响.相较于未佩戴任何矫形器情况,佩戴定制式膝关节矫形器后,膝关节内翻角度减少、内侧压力向外侧转移且内侧间室压力明显降低.定制式增材制造膝关节矫形器可降低早中期内侧间室型膝骨关节炎患者在步行过程中膝关节内侧间室所产生的压力,减荷效果显著.
中图分类号:
许苑晶, 高海峰, 吴云成, 柳毅浩, 张子砚, 黄承兰, 王赞博, 刘同有, 王彩萍, 缪伟强, 王金武. 定制式增材制造膝关节矫形器间室减荷效果的有限元分析[J]. 上海交通大学学报, 2023, 57(5): 560-569.
XU Yuanjing, GAO Haifeng, WU Yuncheng, LIU Yihao, ZHANG Ziyan, HUANG Chenglan, WANG Zanbo, LIU Tongyou, WANG Caiping, MIAO Weiqiang, WANG Jinwu. Finite Element Analysis of Decompression Effect of Custom Additively Manufactured Knee Orthosis Compartments[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 560-569.
[1] | 郑创史, 邱钊禹. 超声波检查在膝骨关节炎早期诊断中的应用价值分析[J]. 内科, 2017, 12(5): 654-656. |
ZHENG Chuangshi, QIU Zhaoyu. Application value analysis of ultrasonic examination in early diagnosis of knee osteoarthritis[J]. Internal Medicine, 2017, 12(5): 654-656. | |
[2] |
THOMAS K N, JAIN N, MOHINDRA N, et al. MRI and sonography of the knee in acute reactive arthritis[J]. JCR: Journal of Clinical Rheumatology, 2021, 28(2): e511-e516.
doi: 10.1097/RHU.0000000000001785 URL |
[3] | WANG H, MA B A. Healthcare and scientific treatment of knee osteoarthritis[J]. Journal of Healthcare Engineering, 2022, 2022: 1-7. |
[4] |
SCHAD P, WOLLENWEBER M, THÜRING J, et al. Magnetic resonance imaging of human knee joint functionality under variable compressive in-situ loading and axis alignment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110: 103890.
doi: 10.1016/j.jmbbm.2020.103890 URL |
[5] |
SHU L M, SATO T, HUA X J, et al. Comparison of kinematics and contact mechanics in normal knee and total knee replacements: A computational investigation[J]. Annals of Biomedical Engineering, 2021, 49(9): 2491-2502.
doi: 10.1007/s10439-021-02812-0 pmid: 34142278 |
[6] |
WANG J Y, QI Y S, BAO H R C, et al. The effects of different repair methods for a posterior root tear of the lateral meniscus on the biomechanics of the knee: A finite element analysis[J]. Journal of Orthopaedic Surgery and Research, 2021, 16(1): 296-304.
doi: 10.1186/s13018-021-02435-0 |
[7] | 高辉, 王晨艳, 李志, 等. 不同屈曲状态下固定轴和移动轴膝关节胫-股关节的生物力学变化[J]. 太原理工大学学报, 2021, 52(1): 144-150. |
GAO Hui, WANG Chenyan, LI Zhi, et al. Biomechanical changes of the tibial-femoral joint of the knee joint with fixed and moving axes under different flexion states[J]. Journal of Taiyuan University of Technology, 2021, 52(1): 144-150. | |
[8] | 李钟鑫, 刘璐, 高丽兰, 等. 人体全膝关节精细有限元模型建立及有效性验证[J]. 生物医学工程与临床, 2020, 24(5): 501-507. |
LI Zhongxin, LIU Lu, GAO Lilan, et al. Establishment and validation of precise finite element model of human total knee joint[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(5): 501-507. | |
[9] |
FUKAYA T, MUTSUZAKI H, AOYAMA T, et al. A simulation case study of knee joint compressive stress during the stance phase in severe knee osteoarthritis using finite element method[J]. Medicina, 2021, 57(6): 550.
doi: 10.3390/medicina57060550 URL |
[10] |
PANWAR J S, RAFEEK T, SRIRAM R, et al. Model for in-vivo estimation of stiffness of tibiofemoral joint using MR imaging and FEM analysis[J]. Journal of Translational Medicine, 2021, 19(1): 310.
doi: 10.1186/s12967-021-02977-1 pmid: 34281578 |
[11] |
ZHANG K J, LI L, YANG L F, et al. Effect of degenerative and radial tears of the meniscus and resultant meniscectomy on the knee joint: A finite element analysis[J]. Journal of Orthopaedic Translation, 2019, 18: 20-31.
doi: 10.1016/j.jot.2018.12.004 pmid: 31508304 |
[12] |
HE X L, TANEJA K, CHEN J S, et al. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles[J]. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38(4): e3571.
doi: 10.1002/cnm.3571 pmid: 35049153 |
[13] |
KONG A P, ROBBINS R M, STENSBY J D, et al. The lateral knee radiograph: A detailed review[J]. The Journal of Knee Surgery, 2022, 35(5): 482-490.
doi: 10.1055/s-0041-1741391 URL |
[14] |
KOH Y G, LEE J A, KIM P S, et al. Effects of the material properties of a focal knee articular prosthetic on the human knee joint using computational simulation[J]. The Knee, 2020, 27(5): 1484-1491.
doi: 10.1016/j.knee.2020.08.001 URL |
[15] | PIERRAT B, MOLIMARD J, CALMELS P, et al. Efficiency and comfort of knee braces: A parametric study based on computational modelling[EB/OL]. (2014-09-19) [2022-06-05]. https://arxiv.org/abs/1409.5756. |
[16] | 赵春霞, 刘婷, 罗云. 膝关节整体免荷矫形器的设计与评价[J]. 医用生物力学, 2015, 30(6): 564-568. |
ZHAO Chunxia, LIU Ting, LUO Yun. Design and evaluation of an overall unloading knee brace[J]. Journal of Medical Biomechanics, 2015, 30(6): 564-568. | |
[17] |
PARK S, LEE S, YOON J, et al. Finite element analysis of knee and ankle joint during gait based on motion analysis[J]. Medical Engineering & Physics, 2019, 63: 33-41.
doi: 10.1016/j.medengphy.2018.11.003 URL |
[18] |
陈彦飞, 鲁超, 赵勇, 等. 基于CT影像动态膝关节有限元模型的构建及仿真力学分析[J]. 中国骨伤, 2020, 33(5): 479-484.
pmid: 32452190 |
CHEN Yanfei, LU Chao, ZHAO Yong, et al. Construction and simulation mechanical analysis of dynamic knee joint finite element model based on CT image[J]. China Journal of Orthopaedics and Traumatology, 2020, 33(5): 479-484.
doi: 10.12200/j.issn.1003-0034.2020.05.018 pmid: 32452190 |
|
[19] | 张刘会, 刘丹平. 膝关节三维有限元模型建立和验证及模拟后交叉韧带重建术[J]. 生物医学工程与临床, 2020, 24(5): 508-513. |
ZHANG Liuhui, LIU Danping. Construction and verification of three-dimensional finite element knee joint model and simulation scheme of posterior cruciate ligament reconstruction[J]. Biomedical Engineering and Clinical Medicine, 2020, 24(5): 508-513. | |
[20] |
ASGARI M, ALI KOUCHAKZADEH M. An equivalent von Mises stress and corresponding equivalent plastic strain for elastic-plastic ordinary peridynamics[J]. Meccanica, 2019, 54(7): 1001-1014.
doi: 10.1007/s11012-019-00975-8 |
[21] |
THIENKAROCHANAKUL K, JAVADI A, AKRAMI M, et al. Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis[J]. Journal of Medical and Biological Engineering, 2020, 40: 409-418.
doi: 10.1007/s40846-020-00523-w |
[22] | 郝瑞胡, 郭林, 李丽丽, 等. 全膝关节置换术治疗膝关节骨性关节炎的临床观察[J]. 中国骨与关节损伤杂志, 2014, 29(6): 544-546. |
HAO Ruihu, GUO Lin, LI Lili, et al. Observation of total knee arthroplasty in treatment of knee osteoarthritis[J]. Chinese Journal of Bone and Joint Injury, 2014, 29(6): 544-546. | |
[23] |
ZHANG Z Q, LIU C, LI Z W, et al. Residual mild varus alignment and neutral mechanical alignment have similar outcome after total knee arthroplasty for varus osteoarthritis in five-year follow-up[J]. The Journal of Knee Surgery, 2020, 33(2): 200-205.
doi: 10.1055/s-0038-1677497 URL |
[24] | 李伟, 方学伟, 周游, 等. 基于MRI技术全膝关节置换术中个体化导航模板的基础研究[J]. 中华关节外科杂志(电子版), 2015, 9(1): 54-58. |
LI Wei, FANG Xuewei, ZHOU You, et al. Study on individual navigation templates based on MRI technology in total knee arthroplasty[J]. Chinese Journal of Joint Surgery (Electronic Edition), 2015, 9(1): 54-58. | |
[25] | 张晓峰. 一种基于圆柱拟合的下肢胫骨机械轴线确定方法: CN 109512513 A[P]. 2019-03-26 [2022-06-05]. |
ZHANG Xiaofeng. Cylinder fitting based lower limb tibia mechanical axis determination method: CN 109512513 A[P]. 2019-03-26 [2022-06-05]. | |
[26] | 陈军. 膝骨性关节炎治疗进展[J]. 饮食保健, 2021(30): 295-296. |
CHEN Jun. Progress in treatment of knee osteoarthritis[J]. Diet Health, 2021(30): 295-296. | |
[27] |
BAGHAEI ROODSARI R, ESTEKI A, AMINIAN G, et al. The effect of orthotic devices on knee adduction moment, pain and function in medial compartment knee osteoarthritis: A literature review[J]. Disability and Rehabilitation: Assistive Technology, 2017, 12(5): 441-449.
doi: 10.3109/17483107.2016.1151952 URL |
[28] | 张旻, 陈博, 江澜, 等. 两种不同矫形器对早期内侧间室膝关节骨性关节炎步态的影响[J]. 中国康复医学杂志, 2014, 29(1): 26-30. |
ZHANG Min, CHEN Bo, JIANG Lan, et al. Effects of different orthoses on the gait in early stage medial compartment knee osteoarthritis[J]. Chinese Journal of Rehabilitation Medicine, 2014, 29(1): 26-30. | |
[29] | KATSUBE G, QI S, ITAMI T, et al. Ankle foot orthosis that prevents slippage for tibial rotation in knee osteoarthritis patients[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Mexico: IEEE, 2021: 4728-4731. |
[30] | 刘鑫, 胡亚飞, 宋作新. 免荷膝关节矫形器干预对膝关节骨性关节炎疼痛及行走能力的影响[J]. 中国康复医学杂志, 2018, 33(8): 973-975. |
LIU Xin, HU Yafei, SONG Zuoxin. Effect of free knee orthosis intervention on pain and walking ability of knee osteoarthritis[J]. Chinese Journal of Rehabilitation Medicine, 2018, 33(8): 973-975. | |
[31] |
COOPER R J, WILCOX R K, JONES A C. Finite element models of the tibiofemoral joint: A review of validation approaches and modelling challenges[J]. Medical Engineering & Physics, 2019, 74: 1-12.
doi: 10.1016/j.medengphy.2019.08.002 URL |
[32] |
HARIS A, BENG CHYE TAN V. Stress response envelopes of intact tibiofemoral joint and knee osteoarthritis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234(10): 1151-1161.
doi: 10.1177/0954411920944078 URL |
[33] |
MATSUMOTO T, HASHIMURA M, TAKAYAMA K, et al. A radiographic analysis of alignment of the lower extremities-initiation and progression of varus-type knee osteoarthritis[J]. Osteoarthritis and Cartilage, 2015, 23(2): 217-223.
doi: 10.1016/j.joca.2014.11.015 URL |
[34] |
WANG S P, WU P K, LEE C H, et al. Association of osteoporosis and varus inclination of the tibial plateau in postmenopausal women with advanced osteoarthritis of the knee[J]. Bmc Musculoskeletal Disorders, 2021, 22(1): 1-8.
doi: 10.1186/s12891-020-03840-y |
[35] | 万超, 郝智秀, 温诗铸. 前交叉韧带力学特性差异对膝关节有限元仿真结果的影响[J]. 医用生物力学, 2012, 27(4): 375-380. |
WAN Chao, HAO Zhixiu, WEN Shizhu. Influence of various mechanical properties of anterior cruciate ligament on finite element simulation of knee joint[J]. Journal of Medical Biomechanics, 2012, 27(4): 375-380. | |
[36] | DAI K R, XU F. Medical application of 3D printing: A powerful tool for personalised treatment[J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 257-258. |
[1] | 黄怀州, 王海龙, 袁玉杰, 侯 涛, 史 睿, 叶茂盛. 一种包板加强T型管节点的简化算法[J]. 海洋工程装备与技术, 2023, 10(4): 64-. |
[2] | 齐建雄, 高 瀚, 雷 宇, 楚 飞, 赵春晖. 液压直驱式修井顶驱整机结构设计[J]. 海洋工程装备与技术, 2022, 9(2): 14-16. |
[3] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[4] | 张聪, 贾德君, 李范春, 徐一通, 张源. 面向3D打印的钛合金点阵接骨板设计及其仿真[J]. 上海交通大学学报, 2021, 55(2): 170-178. |
[5] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[6] | 王威,王珉,胡俊聪,鲍益东,金霞,陈文亮. 面向汽车覆盖件的有限元仿真虚拟匹配方法[J]. 上海交通大学学报, 2020, 54(5): 532-543. |
[7] | 王东伟,刘明星,吴霄,杨睿,代俊安. 电子机柜瞬时冲击的动力学行为[J]. 上海交通大学学报, 2019, 53(Sup.1): 109-117. |
[8] | 马志强,楼云锋,李俊杰,金先龙. 基于多重节点的结构动力学显式异步长并行计算方法[J]. 上海交通大学学报, 2019, 53(9): 1100-1106. |
[9] | 沈洁,张延松. 三层钢板胶焊熔核形成过程的有限元分析[J]. 上海交通大学学报, 2019, 53(6): 726-733. |
[10] | 李昱霖, 安庆升, 杨坤好, 唐晓峰, 刘龙涛. 防热承载一体化复合材料电缆罩分析及验证[J]. 空天防御, 2019, 2(3): 1-7. |
[11] | 李东玮, 王磊, 张聪, 赵亦希. 预折刀工作终止位置对包边边界缩进的影响[J]. 上海交通大学学报, 2019, 53(1): 100-104. |
[12] | 王冬石, 张希, 蒋爱国, 范赞. 基于ANSYS的深海信标O形密封圈的密封性能研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 128-135. |
[13] | 莫继良,王东伟,李建熹,李贞,朱旻昊,周仲荣. 摩擦热对界面磨损及制动系统稳定性的影响[J]. 上海交通大学学报(自然版), 2018, 52(5): 624-630. |
[14] | 李华祥. 疲劳谱分析方法及其在立柱式平台结构分析中的应用[J]. 海洋工程装备与技术, 2016, 3(6): 338-345. |
[15] | 李华祥. 基于一体化集成软件系统的海洋立柱式平台总体结构强度分析[J]. 海洋工程装备与技术, 2016, 3(5): 269-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||