上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (2): 148-160.doi: 10.16183/j.cnki.jsjtu.2022.034
所属专题: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
收稿日期:
2022-02-16
修回日期:
2022-06-14
接受日期:
2022-06-30
出版日期:
2023-02-28
发布日期:
2023-03-01
通讯作者:
张大旭
E-mail:daxu.zhang@sjtu.edu.cn.
作者简介:
王文华(1998-),硕士生,主要研究方向为FRP-海水海砂混凝土结构.
基金资助:
WANG Wenhua, ZHAO Qi, ZHANG Daxu(), ZHANG Peifu, CHEN Peng
Received:
2022-02-16
Revised:
2022-06-14
Accepted:
2022-06-30
Online:
2023-02-28
Published:
2023-03-01
Contact:
ZHANG Daxu
E-mail:daxu.zhang@sjtu.edu.cn.
摘要:
通过建立相对湿度、混凝土孔隙溶液饱和度以及腐蚀反应速率之间定量分析方法,研究了环境相对湿度对海水海砂混凝土环境下玻璃纤维增强聚合物(GFRP)筋力学性能的影响规律.利用混凝土孔隙尺寸分布函数和孔隙溶液的表面张力公式建立了相对湿度与海水海砂混凝土孔溶液饱和度关系模型;假设孔隙液均匀弥散于混凝土,得到了氢氧根(OH-)腐蚀离子浓度;借助蚀刻模型计算OH-作用下GFRP筋的腐蚀速率和强度保留率;利用试验数据验证了分析方法的准确性.根据中国部分沿海城市的气候统计数据,预测了代表性环境温度和水灰比条件下,相对湿度对海水海砂混凝土环境中GFRP筋强度保留率的影响规律,相对湿度的增加促进了GFRP筋的性能退化.结合相关标准规定,得到了海水海砂混凝土环境下GFRP筋的相对湿度与使用年限关系曲线.
中图分类号:
王文华, 赵齐, 张大旭, 张沛涪, 陈鹏. 相对湿度对海水海砂混凝土环境下GFRP筋拉伸性能影响[J]. 上海交通大学学报, 2023, 57(2): 148-160.
WANG Wenhua, ZHAO Qi, ZHANG Daxu, ZHANG Peifu, CHEN Peng. Effects of Relative Humidity on Tensile Property Degradation of GFRP Rebars in Seawater and Sea Sand Concrete Environment[J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 148-160.
[1] | MASUELLI M. Fiber reinforced polymers: The technology applied for concrete repair[M]. London: IntechOpen, 2013: 1-3. |
[2] |
WANG Z, ZHAO X L, XIAN G, et al. Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-89.
doi: 10.1016/j.conbuildmat.2017.02.038 URL |
[3] |
GUO F, AL-SAADI S, SINGH RAMAN R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018, 141: 1-13.
doi: 10.1016/j.corsci.2018.06.022 URL |
[4] | WANG X, JIANG L, SHEN H, et al. Long-term performance of pultruded basalt fiber reinforced polymer profiles under acidic conditions[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 1-11. |
[5] | 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10): 1-19. |
DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. Chinese Journal of Civil Engineering, 2019, 52(10): 1-19. | |
[6] | SHARMA S, ZHANG D, ZHAO Q. Degradation of basalt fiber-reinforced polymer bars in seawater and sea sand concrete environment[J]. Advances in Mechanical Engineering, 2020, 12(3): 1-11. |
[7] | ZHAO Q, ZHANG D, ZHAO X L, et al. Modelling damage evolution of carbon fiber-reinforced epoxy polymer composites in seawater sea sand concrete environment[J]. Composites Science and Technology, 2021, 215: 1-12. |
[8] | IQBAL M, ZHANG D, JALAL F E, et al. Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment[J]. Ocean Engineering, 2021, 232: 1-12. |
[9] | IQBAL M, ZHANG D, JALAL F E. Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model[J]. Journal of Ocean Engineering and Science, 2021, 18(9): 1-12. |
[10] | CHANG Y, WANG Y, WANG M, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials, 2021, 307: 1-17. |
[11] | YI Y, GUO S, LI S, et al. Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment[J]. Construction and Building Materials, 2021, 299: 1-13. |
[12] | MAEKAWA K, ISHIDA T, KISHIK T. Multi-scale modeling of structural concrete[M]. 2nd ed. London and New York: Taylor & Francis, 2009: 5-13. |
[13] | MUKHERJEE A, ARWIKAR S J. Performance of glass fiber-reinforced polymer reinforcing bars in tropical environments — Part II: Microstructural tests[J]. ACI Structural Journal, 2005, 102: 816-22. |
[14] | 刘文博. 混凝土环境中GFRP筋劣化机制研究[J]. 建材与装饰, 2020, 19: 100+103. |
LIU Wenbo. Research on deterioration mechanism of GFRP bars in concrete environment[J]. Building Materials and Decoration, 2020, 19: 100+103. | |
[15] |
HUANG Q, JIANG Z, GU X, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research, 2015, 67: 31-43.
doi: 10.1016/j.cemconres.2014.08.003 URL |
[16] | XI Y, BAZANT Z P, JENNINGS H M. Moisture diffusion in cementitious materials adsorption isotherms[J]. Advanced Cement Based Materials, 1994: 248-257. |
[17] |
AL-ORAIMI S K, TAHA R, HASSAN H F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete[J]. Construction and Building Materials, 2006, 20(7): 499-503.
doi: 10.1016/j.conbuildmat.2004.12.005 URL |
[18] | MEHTA P K, MONTEIRO P J M. Concrete: Microstructure, properties, and materials[M]. 4th ed. New York: McGraw-Hill Education, 2014: 30-36. |
[19] | POWERS T C. Structure and physical properties of hardened portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(1): 1-6. |
[20] |
LI Q, GENG H, HUANG Y, et al. Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study[J]. Construction and Building Materials, 2015, 101: 184-192.
doi: 10.1016/j.conbuildmat.2015.10.076 URL |
[21] |
SIKORA P, CENDROWSKI K, ABD ELRAHMAN M, et al. The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica[J]. Applied Nanoscience, 2019, 10(8): 2627-2638.
doi: 10.1007/s13204-019-00993-8 URL |
[22] |
WANG J, LIU E, LI L. Multiscale investigations on hydration mechanisms in seawater OPC paste[J]. Construction and Building Materials, 2018, 191: 891-903.
doi: 10.1016/j.conbuildmat.2018.10.010 URL |
[23] | GUO M, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 1-12. |
[24] | LIU J, FAN X, LIU J, et al. Investigation on mechanical and micro properties of concrete incorporating seawater and sea sand in carbonized environment[J]. Construction and Building Materials, 2021, 307: 1-17. |
[25] | 姬永生, 董亚男, 袁迎曙, 等. 混凝土孔隙水饱和度的机理分析[J]. 四川建筑科学研究, 2010, 36(2): 215-218. |
JI Yongsheng, DONG Yanan, YUAN Yingshu, et al. Mechanism analysis of pore water saturation of concrete[J]. Sichuan Building Science Research, 2010, 36(2): 215-218. | |
[26] | 葛勇, 常传利, 杨文萃, 等. 常用无机盐对溶液表面张力及混凝土性能的影响[J]. 混凝土, 2007(6): 7-9. |
GE Yong, CHANG Chuanli, YANG Wencui, et al. Effect of inorganic salts on surface tension of solution and properties of concrete[J]. Concrete, 2007(6): 7-9. | |
[27] | ADAMSON A W. Physical chemistry of surfaces[M]. 3rd ed. New York: Wiley-Interscience, 1976. |
[28] | PITZER K S. Activity coefficients in electrolyte solutions[M]. 2nd ed. Boca Raton, FL, USA: CRC Press, 1991. |
[29] | 钱如胜. 现代混凝土孔溶液离子演变规律及数值模拟[D]. 南京: 东南大学, 2018. |
QIAN Rusheng. Ionic evolution law and numerical simulation of pore solution in concrete[D]. Nanjing: Southeast University, 2018. | |
[30] |
HOLT E, LEIVO M. Cracking risks associated with early age shrinkage[J]. Cement and Concrete Composites, 2004, 26(5): 521-530.
doi: 10.1016/S0958-9465(03)00068-4 URL |
[31] | CLAISSE P A. Civil engineering materials[M]. Boston, USA: Butterworth-Heinemann, 2016. |
[32] | 贾道光. 湿度环境对混凝土中GFRP筋耐久性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
JIA Daoguang. Effect of humidity on durability of GFRP bars in concrete[D]. Harbin: Harbin Engineering University, 2015. | |
[33] | 中华人民共和国住房和城乡建设部. 土木工程用玻璃纤维增强筋: JG/T 406—2013[S]. 北京: 中国计划出版社, 2013. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Glass fiber reinforcement for civil engineering: JG/T 406—2013[S]. Beijing: China Planning Press, 2013. | |
[34] | ALI A H, MOHAMED H M, BENMOKRANE B. Bar size effect on long-term durability of sand-coated basalt-FRP composite bars[J]. Composites Part B: Engineering, 2020, 195: 1-13. |
[35] | ACI. Guide for the design and construction of structural concrete reinforced with FRP bars: ACI 440.1 R-15[S]. Indianapolis, USA: American Concrete Institute, 2015. |
[1] | 谢敏骐, 肖慈恩, 卞嘉鹏, 刘亚坤, 范寅, 陈秀华, 刘力博. 热塑性复合材料的电弧附着特征[J]. 上海交通大学学报, 2023, 57(9): 1214-1220. |
[2] | 王汉禹, 陈震, 周笛, 陈兆祥, 潘尔顺. 基于核函数-Wiener过程的轧辊非线性退化建模与剩余寿命预测[J]. 上海交通大学学报, 2023, 57(8): 1037-1045. |
[3] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[4] | 李牧之, 鲍文倩, 王修成, 张一鸣, 袁昱超, 唐文勇. 复合材料护舷实船碰撞仿真方法及防护机理[J]. 上海交通大学学报, 2023, 57(6): 680-689. |
[5] | 刘 军, 张传旭, 曲 杰. 海底管道外腐蚀复合材料水下缠绕补强修复技术应用[J]. 海洋工程装备与技术, 2023, 10(4): 24-. |
[6] | 袁丽华, 梁森, 闫盛宇. 缝合平纹编织复合材料层合板的面内弹性属性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 220-232. |
[7] | 余海燕, 吴航宇. 碳纤维复合材料/钢的胶铆连接失效机理和选材方法[J]. 上海交通大学学报, 2023, 57(2): 230-240. |
[8] | 高爽, 李泽邦, 李森, 初星澎, 刘晓彬, 李想. 玻璃纤维增强复合材料拉-拉疲劳研究[J]. 海洋工程装备与技术, 2023, 10(2): 57-60. |
[9] | 杨苑铎, 李洋, 刘泽光, 王凯峰, 敖三三. CF/PA6与6061铝合金的超声波自熔铆焊[J]. 上海交通大学学报, 2023, 57(2): 221-229. |
[10] | 刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255. |
[11] | 杨玲玉, 董顺, 洪长青. 新型低密度树脂裂解碳改性碳纤维复合材料的制备与性能研究[J]. 空天防御, 2022, 5(4): 1-9. |
[12] | 贾米芝, 徐澧明, 林楠, 南博华, 王坤, 蔡登安, 周光明. 具有回弹复位功能易裂盖的结构设计及力学性能研究[J]. 空天防御, 2022, 5(2): 8-16. |
[13] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[14] | 王烨成, 李洋, 张迪, 杨越, 罗震. 碳纤维增强热塑性复合材料与高强钢的电阻单元焊[J]. 上海交通大学学报, 2022, 56(10): 1349-1358. |
[15] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||