上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (12): 1619-1629.doi: 10.16183/j.cnki.jsjtu.2022.110
所属专题: 《上海交通大学学报》2022年“新型电力系统与综合能源”专题
戴孟祎1, 张志豪1, 涂佳黄2, 韩兆龙1(), 周岱1, 朱宏博1
收稿日期:
2022-04-15
出版日期:
2022-12-28
发布日期:
2023-01-05
通讯作者:
韩兆龙
E-mail:han.arkey@sjtu.edu.cn.
作者简介:
戴孟祎(1997-),女,湖南省长沙市人,硕士生,从事垂直轴风力机相关研究.
基金资助:
DAI Mengyi1, ZHANG Zhihao1, TU Jiahuang2, HAN Zhaolong1(), ZHOU Dai1, ZHU Hongbo1
Received:
2022-04-15
Online:
2022-12-28
Published:
2023-01-05
Contact:
HAN Zhaolong
E-mail:han.arkey@sjtu.edu.cn.
摘要:
风能转化率偏低是阻碍垂直轴风力机市场化发展的重要原因.尾缘襟翼的设计能够改变叶片表面的流场结构,从而提高垂直轴风力机的气动性能.目前关于不同翼型垂直轴风力机的气动性能随尾缘襟翼的变化规律尚不明确.基于计算流体动力学方法,采用转捩剪切应力输运湍流模型,对3种不同分离式尾缘襟翼的翼型(NACA0018、NACA0021和NACA0024)叶片的H型垂直轴风力机气动性能进行数值研究.验证算例与已有的实验结果对比,结果吻合较好,证实本方法的可靠性.进一步考虑3种基础翼型与5组襟翼偏转角(-16°、-8°、0°、8°、16°)参数,探究垂直轴风力机的气动性能差异,分析其内在机理.研究结果表明:逆风区正向襟翼偏转角可以有效提高叶片的弯矩系数,顺风区负向襟翼偏转角对叶片的弯矩系数产生有利影响.在负向襟翼偏转角下,风能利用率受偏转影响的程度与翼型厚度呈正相关;在正向襟翼偏转角下,风能利用率受偏转影响的程度与翼型厚度呈负相关.研究成果可以为垂直轴风力机尾缘襟翼的应用提供有效参考.
中图分类号:
戴孟祎, 张志豪, 涂佳黄, 韩兆龙, 周岱, 朱宏博. 尾缘襟翼偏转角对不同翼型的垂直轴风力机气动影响研究[J]. 上海交通大学学报, 2022, 56(12): 1619-1629.
DAI Mengyi, ZHANG Zhihao, TU Jiahuang, HAN Zhaolong, ZHOU Dai, ZHU Hongbo. Aerodynamic Effect of Deflection Angle of Trailing Edge Flap on Vertical Axis Wind Turbine with Different Airfoils[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1619-1629.
[21] |
LAM H F, PENG H Y. Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations[J]. Renewable Energy, 2016, 90: 386-398.
doi: 10.1016/j.renene.2016.01.011 URL |
[22] |
ZHANG L X, LIANG Y B, LIU X H, et al. Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD[J]. Advances in Mechanical Engineering, 2013, 5: 905379.
doi: 10.1155/2013/905379 URL |
[23] |
REZAEIHA A, KALKMAN I, BLOCKEN B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment[J]. Renewable Energy, 2017, 107: 373-385.
doi: 10.1016/j.renene.2017.02.006 URL |
[24] |
SOBHANI E, GHAFFARI M, MAGHREBI M J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241.
doi: 10.1016/j.energy.2017.05.105 URL |
[25] |
REZAEIHA A, KALKMAN I, BLOCKEN B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine[J]. Applied Energy, 2017, 197: 132-150.
doi: 10.1016/j.apenergy.2017.03.128 URL |
[26] |
SAGHARICHI A, MAGHREBI M J, ARABGOLARCHEH A. Variable pitch blades: An approach for improving performance of Darrieus wind turbine[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053305.
doi: 10.1063/1.4964310 URL |
[1] |
MITTAL P, MITRA K. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach[J]. Journal of Cleaner Production, 2018, 202: 342-359.
doi: 10.1016/j.jclepro.2018.08.093 URL |
[2] |
HAND B, KELLY G, CASHMAN A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110699.
doi: 10.1016/j.rser.2020.110699 URL |
[3] |
HAND B, CASHMAN A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646.
doi: 10.1016/j.seta.2020.100646 URL |
[4] |
LI Q A, MAEDA T, KAMADA Y, et al. Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 164: 1-12.
doi: 10.1016/j.jweia.2017.02.005 URL |
[5] |
ZHU H T, HAO W X, LI C, et al. Effect of geometric parameters of Gurney flap on performance enhancement of straight-bladed vertical axis wind turbine[J]. Renewable Energy, 2021, 165: 464-480.
doi: 10.1016/j.renene.2020.11.027 URL |
[6] |
WANG H P, ZHANG B, QIU Q G, et al. Flow control on the NREL S809 wind turbine airfoil using vortex generators[J]. Energy, 2017, 118: 1210-1221.
doi: 10.1016/j.energy.2016.11.003 URL |
[7] |
DAM C P V. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144.
doi: 10.1016/S0376-0421(02)00002-7 URL |
[8] |
CHEN B, SU S S, VIOLA I M, et al. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean Engineering, 2018, 155: 75-87.
doi: 10.1016/j.oceaneng.2018.02.038 URL |
[9] |
LI C, XIAO Y Q, XU Y L, et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212: 1107-1125.
doi: 10.1016/j.apenergy.2017.12.035 URL |
[10] | 向斌, 缪维跑, 李春, 等. 垂直轴风力机叶片尾缘主动式格尼襟翼气动效率研究分析[J]. 热能动力工程, 2020, 35(4): 242-250. |
XIANG Bin, MIAO Weipao, LI Chun, et al. Research of aerodynamic efficiency of active gurney flaps on the trailing edge of vertical axis wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 242-250. | |
[11] | 缪维跑, 李春, 聂佳斌, 等. 襟翼翼型位置对气动性能的影响研究[J]. 能源研究与信息, 2015, 31(4): 242-246. |
MIAO Weipao, LI Chun, NIE Jiabin, et al. Influence of the flap airfoils with different positions on the aerodynamic performance[J]. Energy Research and Information, 2015, 31(4): 242-246. | |
[12] | 祖红亚, 李春, 李润杰, 等. 襟翼相对长度对翼型气动性能的影响[J]. 动力工程学报, 2015, 35(8): 666-673. |
ZU Hongya, LI Chun, LI Runjie, et al. Effect of relative flap length on aerodynamic performance of the airfoil[J]. Journal of Chinese Society of Power Engineering, 2015, 35(8): 666-673. | |
[13] | RACITI CASTELLI M, ARDIZZON G, BATTISTI L, et al. Modeling strategy and numerical validation for a darrieus vertical axis micro-wind turbine[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada: ASME, 2010: 409-418. |
[14] |
REZAEIHA A, MONTAZERI H, BLOCKEN B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters[J]. Energy Conversion and Management, 2018, 169: 45-77.
doi: 10.1016/j.enconman.2018.05.042 URL |
[15] | PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]//Ion paraschivoiu. Canada: Presses inter Polytechnique, 2002. |
[16] | 祖红亚, 李春, 陆云凤, 等. 襟翼翼缝相对宽度对翼型气动性能影响研究[J]. 能源工程, 2015(3): 12-19. |
ZU Hongya, LI Chun, LU Yunfeng, et al. Study on effect of relative width of flap slot on airfoil aerodynamic performance[J]. Energy Engineering, 2015(3): 12-19. | |
[17] | 李润杰, 祖红亚, 李春, 等. 襟翼翼缝相对宽度对翼型动态气动性能的影响[J]. 热能动力工程, 2016, 31(4): 38-44. |
LI Runjie, ZU Hongya, LI Chun, et al. Effect of the relative width of wing flap slit on the aerodynamic performance of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(4): 38-44. | |
[18] |
GHASEMIAN M, ASHRAFI Z N, SEDAGHAT A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines[J]. Energy Conversion and Management, 2017, 149: 87-100.
doi: 10.1016/j.enconman.2017.07.016 URL |
[19] |
MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables: Part I. Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413.
doi: 10.1115/1.2184352 URL |
[27] |
POST M L, CORKE T C. Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125-3135.
doi: 10.2514/1.22716 URL |
[20] |
ARAB A, JAVADI M, ANBARSOOZ M, et al. A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia[J]. Renewable Energy, 2017, 107: 298-311.
doi: 10.1016/j.renene.2017.02.013 URL |
[1] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[2] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[3] | 徐圣冠, 陈红全, 张加乐, 高缓钦, 贾雪松. 高效高精度全局优化算法及其气动应用研究[J]. 空天防御, 2022, 5(3): 65-72. |
[4] | 孙翀, 田甜, 竺晓程, 杜朝辉. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56(1): 45-52. |
[5] | 李艺, 白俊强, 张彦军, 赵轲. 分布式粗糙前缘对NACA0012翼型失速特性的影响[J]. 上海交通大学学报, 2022, 56(1): 101-113. |
[6] | 杨梦姚, 毛璐璐, 韩兆龙, 周岱, 雷航, 曹宇. 三叶片H型垂直轴风力机风振与减振研究[J]. 上海交通大学学报, 2021, 55(4): 347-356. |
[7] | 曹宇, 韩兆龙, 周岱, 雷航. 对转式垂直轴风力机气动性能研究[J]. 上海交通大学学报, 2021, 55(2): 141-148. |
[8] | 庄皓琬, 滕金芳, 朱铭敏, 羌晓青. 考虑加工公差的叶片对压气机气动性能的影响[J]. 上海交通大学学报, 2020, 54(9): 935-942. |
[9] | 徐野, 熊鹰, 黄政. 双桨船螺旋桨空泡脉动压力的试验及数值研究[J]. 上海交通大学学报, 2020, 54(8): 831-838. |
[10] | 夏立, 邹早建, 袁帅, 曾智华. 基于非侵入式混沌多项式法的随机阻曳流CFD模拟不确定度量化[J]. 上海交通大学学报, 2020, 54(6): 584-591. |
[11] | 郭军,陈作钢,戴原星,陈建平. 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54(1): 1-9. |
[12] | 谢行,任慧龙,陶凯东,冯亿坤. 应用改进流体体积法的楔形体斜向入水研究[J]. 上海交通大学学报, 2020, 54(1): 20-27. |
[13] | 王鹏,崔玉超,陈迎春,张晓东,邓志,卢少鹏,滕金芳. 宽体客机反推格栅气动性能实验与数值模拟研究[J]. 上海交通大学学报(自然版), 2019, 53(4): 413-422. |
[14] | 李亮,解茂昭,贾明,刘宏升. 超临界射流模型的构建及验证[J]. 上海交通大学学报(自然版), 2018, 52(9): 1058-1064. |
[15] | 陆嘉华,羌晓青,滕金芳,余文胜. 鸟撞损伤风扇气动性能的适航符合性研究[J]. 上海交通大学学报(自然版), 2017, 51(8): 932-938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||