上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (1): 101-113.doi: 10.16183/j.cnki.jsjtu.2020.324
收稿日期:
2020-10-11
出版日期:
2022-01-28
发布日期:
2022-01-21
通讯作者:
白俊强
E-mail:junqiang@nwpu.edu.cn
作者简介:
李 艺(1990-),男,河南省洛阳市人,博士生,从事湍流模拟、混合方法、粗糙度转捩研究.
基金资助:
LI Yi1, BAI Junqiang1(), ZHANG Yanjun2, ZHAO Ke2
Received:
2020-10-11
Online:
2022-01-28
Published:
2022-01-21
Contact:
BAI Junqiang
E-mail:junqiang@nwpu.edu.cn
摘要:
以NACA0012翼型为研究对象,分析在全湍和转捩两种流动状态下分布式粗糙前缘对翼型失速特性的影响规律.使用Menter切应力输运模型和$\gamma - \overline{Re_{\theta t}}$($\overline{Re_{\theta t}}$为转捩动量厚度雷诺数,γ为间歇因子)转捩模型,并分别耦合粗糙度模型和粗糙增长因子输运方程对翼型绕流进行模拟,分析翼型失速特性变化及失速前边界层流动发展状况.结果表明:全湍状态下粗糙前缘不改变NACA0012翼型的后缘失速形态,但失速迎角及最大升力系数显著减小.转捩状态下,粗糙前缘抑制前缘层流分离泡的形成,将翼型的前缘失速类型改变为后缘失速,失速迎角及最大升力系数显著增大.
中图分类号:
李艺, 白俊强, 张彦军, 赵轲. 分布式粗糙前缘对NACA0012翼型失速特性的影响[J]. 上海交通大学学报, 2022, 56(1): 101-113.
LI Yi, BAI Junqiang, ZHANG Yanjun, ZHAO Ke. Influence of Distributed Leading-Edge Roughness on Stall Characteristics of NACA0012 Airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 101-113.
[1] | BERTIN J J, CUMMINGS R M. Aerodynamics for engineers[M]. 6th ed. Harlow Essex: Pearson Education Limited, 2013. |
[2] | RAMSAY R R, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[3] | JANISZEWSKA J M, RAMSAY R R, HOFFMAN M J, et al. Effects of grit roughness and pitch oscillations on the S814 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[4] | REUSS R L, HOFFMAN M Jand GREGOREK G M. Effects of surface roughness and vortex generators on the NACA 4415 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[5] |
KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal, 1997, 35(1):75-84.
doi: 10.2514/2.65 URL |
[6] | 包能胜, 霍福鹏, 叶枝全, 等. 表面粗糙度对风力机翼型性能的影响[J]. 太阳能学报, 2005, 26(4):458-462. |
BAO Nengsheng, HUO Fupeng, YE Zhiquan, et al. Aerodynamic performance influence with roughness on wind turbine airfoil surface[J]. Acta Energiae Solaris Sinica, 2005, 26(4):458-462. | |
[7] | 包能胜, 倪维斗. 风力机翼型前缘表面粗糙度对气动性能影响[J]. 太阳能学报, 2008, 29(12):1465-1470. |
BAO Nengsheng, NI Weidou. Influence of additional rough strap of wind turbine airfoil leading edge surface on aerodynamic performance[J]. Acta Energiae Solaris Sinica, 2008, 29(12):1465-1470. | |
[8] | LI D S, LI R N, YANG C X, et al. Effects of surface roughness on aerodynamic performance of a wind turbine airfoil[C]// 2010 Asia-Pacific Power and Energy Engineering Conference. Piscataway, NJ, USA: IEEE, 2010: 1-4. |
[9] | 李仁年, 陈寅. 雷诺数对粗糙表面翼型气动性能的影响[J]. 南京航空航天大学学报, 2011, 43(5):693-696. |
LI Rennian, CHEN Yin. Effects of surface roughness and Reynolds number on aerodynamic performance of wind turbine airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5):693-696. | |
[10] | 焦灵燕, 汪建文, 贺玲丽. 粗糙度对风力机翼型气动性能影响的模拟研究[J]. 可再生能源, 2014, 32(12):1816-1820. |
JIAO Lingyan, WANG Jianwen, HE Lingli. Simulation study on effect of surface roughness on aerodynamic performance of wind turbine airfoil[J]. Renewable Energy Resources, 2014, 32(12):1816-1820. | |
[11] | JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]// 33rd AIAA Applied Aerodynamics Conference. Reston, Virginia, USA: AIAA, 2015. |
[12] | 李虹杨, 郑赟, 刘大响. 粗糙壁面诱导的流动转捩数值模拟方法[J]. 航空动力学报, 2016, 31(9):2251-2257. |
LI Hongyang, ZHENG Yun, LIU Daxiang. Numerical simulation method of roughness induced transition[J]. Journal of Aerospace Power, 2016, 31(9):2251-2257. | |
[13] | 李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报, 2016, 42(10):2038-2047. |
LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2038-2047. | |
[14] |
ZHANG Y. Effects of distributed leading-edge roughness on aerodynamic performance of a low-Reynolds-number airfoil: An experimental study[J]. Theoretical and Applied Mechanics Letters, 2018, 8(3):201-207.
doi: 10.1016/j.taml.2018.03.010 URL |
[15] |
KRUSE E K, SØRENSEN N, BAK C, et al. CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633-418 airfoil[J]. Wind Energy, 2020, 23(11):2056-2067.
doi: 10.1002/we.v23.11 URL |
[16] |
WANG M Y, YANG C W, LI Z L, et al. Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number[J]. Chinese Journal of Aeronautics, 2021, 34(3):71-81.
doi: 10.1016/j.cja.2020.08.020 URL |
[17] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
doi: 10.2514/3.12149 URL |
[18] | LANGEL C M, CHOW R, VAN DAM C P. Further developments to a local correlation based roughness model for boundary layer transition prediction[C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia, USA: AIAA, 2015. |
[19] | LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University Stuttgart, 2006. |
[20] | LANGEL C M, CHOW R, VAN DAM C P, et al. RANS based methodology for predicting the influence of leading edge erosion on airfoil performance [R]. Albuquerque,New Mexico: Sandia National Laboratories, 2017. |
[21] |
WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838.
doi: 10.2514/1.36541 URL |
[22] |
LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
doi: 10.2514/1.42362 URL |
[23] |
DURBIN P A, MEDIC G, SEO J M, et al. Rough wall modification of two-layer k model[J]. Journal of Fluids Engineering, 2001, 123(1):16-21.
doi: 10.1115/1.1343086 URL |
[24] |
KNOPP T, EISFELD B, CALVO J B. A new extension for k-ω turbulence models to account for wall roughness[J]. International Journal of Heat and Fluid Flow, 2009, 30(1):54-65.
doi: 10.1016/j.ijheatfluidflow.2008.09.009 URL |
[25] |
AUPOIX B. Roughness corrections for the k-ω shear stress transport model: Status and proposals[J]. Journal of Fluids Engineering, 2015, 137(2):021202.
doi: 10.1115/1.4028122 URL |
[26] | FEINDT E G. Untersuchungen über die abhängigkeit des umschlages laminar-turbulent von der oberflächenrauhigkeit und der druckverteilung[J]. Schiffbautechn, 1957, 50(8):180-203. |
[27] | DASSLER P, KOZULOVIC D, FIALA A. Modeling of roughness-induced transition using local variables[C]// FiFth European Conference on Computational Fluid Dynamics, Lisbon, Portugal: ECCOMAS, 2010. |
[1] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[2] | 徐圣冠, 陈红全, 张加乐, 高缓钦, 贾雪松. 高效高精度全局优化算法及其气动应用研究[J]. 空天防御, 2022, 5(3): 65-72. |
[3] | 孙翀, 田甜, 竺晓程, 杜朝辉. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56(1): 45-52. |
[4] | 何利华, 潘建峰, 倪敬, 冯凯, 崔智. 压铸铝合金用铣刀表面微织构及切削特性研究[J]. 上海交通大学学报, 2021, 55(6): 750-756. |
[5] | 高原, 吴亚东, 欧阳华. 压气机退失速控制的数值仿真[J]. 上海交通大学学报, 2021, 55(11): 1343-1351. |
[6] | 刘世奥, 廖晨聪, 陈锦剑, 叶冠林, 夏小和. 饱和砂土-结构物接触面强度特性的三轴试验方法[J]. 上海交通大学学报, 2021, 55(11): 1371-1379. |
[7] | 帅鹏, 周波华, 王飞, 许新鹏, 江中. 防空导弹对过失速机动目标拦截研究[J]. 空天防御, 2018, 1(4): 65-70. |
[8] | 高云1, 2,郑文龙1,熊友明1,邹丽3. 不同表面粗糙度下圆柱体涡激振动响应特性数值研究[J]. 上海交通大学学报(自然版), 2018, 52(4): 419-428. |
[9] | 王广,沈昕,竺晓程,杜朝辉. 基于多重分形的湍流风场脉动特性[J]. 上海交通大学学报(自然版), 2018, 52(11): 1417-1421. |
[10] | 李冬1,张辰1,王福新1,刘洪1,杨坤2. 多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 921-931. |
[11] | 刘鹏寅1,2,陈进格1,沈昕1,竺晓程1,杜朝辉1. 风力机翼型在大攻角流场下的动力模态分解分析[J]. 上海交通大学学报(自然版), 2017, 51(7): 805-811. |
[12] | 唐睿1,2,胡成亮1,赵震1. 一种考虑侧接触切向滑动的微凸体弹塑性变形传热模型[J]. 上海交通大学学报(自然版), 2017, 51(5): 520-. |
[13] | 李冬,张辰,王福新,刘洪. 结冰对带舵面翼型流场的影响及其气动参数分析[J]. 上海交通大学学报(自然版), 2017, 51(3): 367-. |
[14] | 牟介刚1,代东顺1,谷云庆1,刘剑1,郑水华1,WANG Evan2. 非光滑表面离心泵叶轮的流动减阻特性[J]. 上海交通大学学报(自然版), 2016, 50(02): 306-312. |
[15] | 谷云庆1,牟介刚1,郑水华1,赵刚2,孙壮志2,汝晶2. 射流表面多因素耦合减阻特性及其对边界层的控制行为[J]. 上海交通大学学报(自然版), 2014, 48(09): 1334-1340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||