上海交通大学学报(自然版) ›› 2017, Vol. 51 ›› Issue (8): 921-931.doi: 10.16183/j.cnki.jsjtu.2017.08.005
李冬1,张辰1,王福新1,刘洪1,杨坤2
出版日期:
2017-08-30
发布日期:
2017-08-30
基金资助:
LI Dong1,ZHANG Chen1,WANG Fuxin1,LIU Hong1,YANG Kun2
Online:
2017-08-30
Published:
2017-08-30
Supported by:
摘要: 基于验证有效的SJTUICE(Shanghai Jiao Tong University Icing Simulation Code)数值方法,模拟了大粒径过冷水滴(SLD)条件下多段翼型冰形特征,并与常规粒径条件作对比,通过计算流体力学方法分析了多段翼型在SLD条件与常规粒径条件结冰对气动影响的差异性.结果表明:SLD条件下,缝翼处结出的角冰更大且位置更靠后,襟翼处结冰的影响尤为明显,向前生长出较大冰角,造成缝道处流场严重改变.攻角6°~22° 范围内,SLD结冰对气动性能的改变远大于常规粒径条件,其中400μm粒径水滴结冰后最大升力系数的下降达63.5%,失速攻角大幅提前8°.
中图分类号:
李冬1,张辰1,王福新1,刘洪1,杨坤2. 多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报(自然版), 2017, 51(8): 921-931.
LI Dong1,ZHANG Chen1,WANG Fuxin1,LIU Hong1,YANG Kun2. An Investigation on the Characteristics of Supercooled Large
Droplet Icing Accretions and Aerodynamic Effects on
HighLift Configuration[J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 921-931.
[1]FAA A. Engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions[J]. Federal Register, 2010, 75(124): 3731137339. [2]AKHURST R J. Aircraft accident report: Inflight icing encounter and loss of control, simmons airlines, d.b.a. American eagle flight 4184, Avions de transport regional (ATR) model 72212, n401am, Roselawn, Indiana, October 31, 1994[J]. Journal of Clinical Investigation, 2002, 109(12), 15331536. [3]Ice Protection Harmonization Working Group. Working group report on supercooled large droplet rulemaking[R]. Washington: Transport Airplane Directorate IPHWG Task 2 Report, Submitted to the Transport Airplane Engine Issues Group, 2005. [4]GE 791 Occurrence Investigation Report. Inflight icing encounter and crash into the sea, Transasia airways flight 791, ATR72200, B22708, 17 kilometers southwest of Makung city, Penghu islands, Taiwan, December 21, 2002 (ASCAOR0504001)[R]. Taibei, China: GE, 2002. [5]李焱鑫. 面向SLD适航需求的大型客机翼型结冰安全性研究[D]. 上海: 上海交通大学航空航天学院, 2013. [6]National Transportation Safety Board. Crash during takeoff in icing conditions, Canadair, Ltd (CL6002A12, N873G)[R]. Montrose: NTSB/AAB, 2006. [7]SPANGLER C, PARK A. Loss of control on approach Colgan Air, Inc. operating as continental connection flight 3407 Bombardier DHC8400[C]∥Clarence Center. ACM SIGGRAPH. New York: ACM, 2010: 1. [8]DAVID C P. Developing critical ice shapes for use in aircraft development and certification[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007: 91. [9]DEAN R M, Mark G P. Preliminary investigation of ice shape sensitivity to parameter variations[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 73. [10]DEAN R M, Mark G P. Additional investigations of ice shape sensitivity to parameter variations[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006: 469. [11]LUXFORD G, HAMMOND D W, IVEY P. Modelling, imaging and measurement of distortion, drag and breakup of aircrafticing droplets[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 71. [12]TAN S C. Effects of large droplet dynamics on airfoil impingement characteristics[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 74. [13]张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013(2): 144150. ZHANG Chen, KONG Weiliang, LIU Hong. Study on simulation model of icing simulation of large diameter supercooled water droplets[J]. Journal of Aerodynamics, 2013(2): 144150. [14]TAN S C, PAPADAKIS M. Simulation of SLD impingement on a highlift airfoil[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006: 463. [15]KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a winddriven supercooled waterfilm on an icing surface. I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42: 481498. [16]KAREV A R, FARZANEH M,LOZOWSKI E P. Character and stability of a winddriven supercooled water film on an icing surface. II. Transition and turbulent heat transfer[J]. International Journal of Thermal Sciences, 2003,42: 499511. [17]KONG W L, LIU H. An ice accretion model for aircraft icing based on supercooled icing: Theory and application[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 1205. [18]KONG W L,LIU H. Development and theoretical analysis of an aircraft supercooled icing model[J]. Journal of Aircraft, 2014, 51(3): 975986. DOI: 10.2514/1.C032450. [19]BROEREN A P, LAMARRE C M, BRAGG M B, et al. Characteristics of SLD ice accretions on airfoils and their aerodynamic effects[J]. AIAA Paper, 2005, 1065: 75. [20]LEE S. Effects of supercooled largedroplet icing on airfoil aerodynamics[D]. USA: University of Illinois at UrbanaChampaign, 2001. [21]李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376382. LI Yanxin, ZHANG Chen, LIU Hong, et al. Pneumatic effect analysis of airfoil with large diameter supercooled water overflow[J]. Journal of Aerodynamics, 2014, 32 (3): 376382. [22]SANKAR L N, PHAENGSOOK N, BANGALORE A. Effects of icing on the aerodynamic performance of high lift airfoils[C]∥31st Aerospace Sciences Meeting. Reno, NV, USA: [s.n.], 1993. DOI: 10.2514/6.199326. [23]LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669767 [24]张辰. 动力学效应影响下的大粒径过冷水成冰机理研究[D]. 上海: 上海交通大学航空航天学院, 2012. [25]GHARALI K, GU M, JOHNSON D A. A PIV study of a low Reynolds number pitch oscillating SD7037 airfoil in dynamic stall with CFD comparison[C]∥16th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon: DE Fredberg, 2012. [26]BROEREN A P, BRAGG M B, ADDY H E, et al. Effect of highfidelity iceaccretion simulations on fullscale airfoil performance[J]. Journal of Aircraft, 2010, 47(1): 240254. [27]MARK G P, NASA J H. Ice mass measurements: Implications for the ice accretion process[C]∥41st Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2003: 387. [28]WILLIAM B W, MARK G P. Semiempirical modeling of SLD physics[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2004: 412. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||