上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (10): 1368-1377.doi: 10.16183/j.cnki.jsjtu.2021.161
收稿日期:
2021-05-18
出版日期:
2022-10-28
发布日期:
2022-11-03
通讯作者:
潘尔顺
E-mail:pes@sjtu.edu.cn
作者简介:
马航宇(1996-),男,浙江省台州市人,硕士生,从事设备智能故障诊断研究.
基金资助:
MA Hangyu1, ZHOU Di1, WEI Yujie1, WU Wei2, PAN Ershun1()
Received:
2021-05-18
Online:
2022-10-28
Published:
2022-11-03
Contact:
PAN Ershun
E-mail:pes@sjtu.edu.cn
摘要:
机械设备服役过程中,工作环境和运转状态的动态变化直接影响设备故障诊断正确率,导致时间成本和经济效益的损失.优化深度置信网络结构,结合固定学习步长的信号分解技术,保留传感器数据原始特征,逐层反复提取信号的深层关键信息,并集成数据丢失技术优化网络结构,可以规避过拟合问题.进一步,结合迁移学习中的领域自适应方法,固化不同层级深度置信网络的记忆特征,形成考虑平移不变特征的自适应深度置信网络,识别变工况下同类故障信号特征信息,提升轴承智能故障诊断的准确性和泛化性.基于滚动轴承公开数据集,不同工况下该方法平均正确率高达95.65%,与其他5种方法相比较,证实了本文方法的有效性与准确性.
中图分类号:
马航宇, 周笛, 卫宇杰, 吴伟, 潘尔顺. 变工况下基于自适应深度置信网络的轴承智能故障诊断[J]. 上海交通大学学报, 2022, 56(10): 1368-1377.
MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377.
[1] | 孙旺, 李彦明, 杜文辽, 等. 基于蚁群神经网络的泵车主泵轴承性能评估[J]. 上海交通大学学报, 2012, 46(4): 596-600. |
SUN Wang, LI Yanming, DU Wenliao, et al. State performance evaluation for the main pump bearing of pump truck based on ant colony optimization of neural network[J]. Journal of Shanghai Jiao Tong University, 2012, 46(4): 596-600. | |
[2] |
雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21): 49-56.
doi: 10.3901/JME.2015.21.049 |
LEI Yaguo, JIA Feng, ZHOU Xin, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21): 49-56.
doi: 10.3901/JME.2015.21.049 |
|
[3] |
WEN X Q, XU Z A. Wind turbine fault diagnosis based on ReliefF-PCA and DNN[J]. Expert Systems with Applications, 2021, 178: 115016.
doi: 10.1016/j.eswa.2021.115016 URL |
[4] |
HASHIM M A, NASEF M H, KABEEL A E, et al. Combustion fault detection technique of spark ignition engine based on wavelet packet transform and artificial neural network[J]. Alexandria Engineering Journal, 2020, 59(5): 3687-3697.
doi: 10.1016/j.aej.2020.06.023 URL |
[5] | 逯程, 徐廷学, 王虹. 基于属性粒化聚类与回声状态网络的末制导雷达故障诊断[J]. 上海交通大学学报, 2018, 52(9): 1112-1119. |
LU Cheng, XU Tingxue, WANG Hong. Fault diagnosis of terminal guidance radar based on attribute granulation clustering and echo state network[J]. Journal of Shanghai Jiao Tong University, 2018, 52(9): 1112-1119. | |
[6] | 王昊, 邱思琦, 王丽亚. 结合深度自编码与强化学习的轴承健康评估[J]. 工业工程与管理, 2021, 26(3): 89-95. |
WANG Hao, QIU Siqi, WANG Liya. Health assessment of bearings based on deep auto-encoder and reinforcement learning[J]. Industrial Engineering and Management, 2021, 26(3): 89-95. | |
[7] |
马萍, 张宏立, 范文慧. 基于局部与全局结构保持算法的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(2): 20-25.
doi: 10.3901/JME.2017.02.020 |
MA Ping, ZHANG Hongli, FAN Wenhui. Fault diagnosis of rolling bearings based on local and global preserving embedding algorithm[J]. Chinese Journal of Mechanical Engineering, 2017, 53(2): 20-25. | |
[8] |
MINHAS A S, KANKAR P K, KUMAR N, et al. Bearing fault detection and recognition methodology based on weighted multiscale entropy approach[J]. Mechanical Systems and Signal Processing, 2021, 147: 107073.
doi: 10.1016/j.ymssp.2020.107073 URL |
[9] |
MA Y L, CHENG J S, WANG P, et al. Rotating machinery fault diagnosis based on multivariate multiscale fuzzy distribution entropy and Fisher score[J]. Measurement, 2021, 179: 109495.
doi: 10.1016/j.measurement.2021.109495 URL |
[10] | 沈飞, 陈超, 徐佳文, 等. 谱质心迁移在变工况轴承故障诊断的应用[J]. 仪器仪表学报, 2019, 40(5): 99-108. |
SHEN Fei, CHEN Chao, XU Jiawen, et al. Application of spectral centroid transfer inbearing fault diagnosis under varying working conditions[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 99-108. | |
[11] |
LI Q, SHEN C Q, CHEN L, et al. Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions[J]. Mechanical Systems and Signal Processing, 2021, 147: 107095.
doi: 10.1016/j.ymssp.2020.107095 URL |
[12] |
ZHAO B, ZHANG X M, LI H, et al. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions[J]. Knowledge-Based Systems, 2020, 199: 105971.
doi: 10.1016/j.knosys.2020.105971 URL |
[13] | 赵小强, 梁浩鹏. 使用改进残差神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2020, 54(9): 23-31. |
ZHAO Xiaoqiang, LIANG Haopeng. Fault diagnosis method for rolling bearing under variable working conditions using improved residual neural network[J]. Journal of Xi’an Jiaotong University, 2020, 54(9): 23-31. | |
[14] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
doi: 10.1126/science.1127647 pmid: 16873662 |
[15] | 李艳峰, 王新晴, 张梅军, 等. 基于奇异值分解和深度信度网络多分类器的滚动轴承故障诊断方法[J]. 上海交通大学学报, 2015, 49(5): 681-686. |
LI Yanfeng, WANG Xinqing, ZHANG Meijun, et al. An approach to fault diagnosis of rolling bearing using SVD and multiple DBN classifiers[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5): 681-686. | |
[16] |
MA S, CHU F L. Ensemble deep learning-based fault diagnosis of rotor bearing systems[J]. Computers in Industry, 2019, 105: 143-152.
doi: 10.1016/j.compind.2018.12.012 |
[17] |
WANG G M, QIAO J F, LI X L, et al. Improved classification with semi-supervised deep belief network[J]. IFAC PapersOnLine, 2017, 50(1): 4174-4179.
doi: 10.1016/j.ifacol.2017.08.807 URL |
[18] |
CHE C C, WANG H W, NI X M, et al. Domain adaptive deep belief network for rolling bearing fault diagnosis[J]. Computers & Industrial Engineering, 2020, 143: 106427.
doi: 10.1016/j.cie.2020.106427 URL |
[19] | JAITLY N, HINTON G. Learning a better representation of speech soundwaves using restricted boltzmann machines[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Prague, Czech Republic: IEEE, 2011: 5884-5887. |
[20] | HINTON G.E. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1), 926-947. |
[21] |
HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
doi: 10.1162/089976602760128018 pmid: 12180402 |
[22] |
CHEN Y, YANG C L, ZHANG Y. Deep domain similarity Adaptation Networks for across domain classification[J]. Pattern Recognition Letters, 2018, 112: 270-276.
doi: 10.1016/j.patrec.2018.08.006 URL |
[23] | GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13(1): 723-773 |
[24] | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4): 212-223. |
[25] | 张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019, 45(11): 2291-2300. |
ZHANG Zhenliang, LIU Junqiang, HUANG Liang, et al. A bearing fault diagnosis method based on semi-supervised and transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2291-2300. | |
[26] |
WANG G M, QIAO J F, BI J, et al. TL-GDBN: Growing deep belief network with transfer learning[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 874-885.
doi: 10.1109/TASE.2018.2865663 URL |
[1] | 许勇, 蔡云泽, 宋林. 基于数据驱动的核电设备状态评估研究综述[J]. 上海交通大学学报, 2022, 56(3): 267-278. |
[2] | 刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190. |
[3] | 胡晓强,仲训昱,张霄力,彭侠夫,何荧. 基于支持向量机辅助的四轴陀螺两级故障诊断方法[J]. 上海交通大学学报, 2020, 54(11): 1151-1156. |
[4] | 逯程1,徐廷学1,王虹2. 基于属性粒化聚类与回声状态网络的末制导雷达故障诊断[J]. 上海交通大学学报(自然版), 2018, 52(9): 1112-1119. |
[5] | 贾雷,董炜,孙新亚,吉吟东,陈华. 基于节点电压增量方程的含容差轨道电路软故障诊断[J]. 上海交通大学学报(自然版), 2017, 51(6): 679-685. |
[6] | 侯彦东,闫治宇,金勇. 小样本下基于特征子空间估计的故障诊断算法[J]. 上海交通大学学报(自然版), 2015, 49(06): 825-829. |
[7] | 邱路1,叶银忠2. 基于多Agent系统的动态网络系统拓扑结构故障诊断方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 902-906. |
[8] | 王秀青1,侯增广2,曾慧3,吕锋1,潘世英1. 基于多传感器信息融合的机器人故障诊断[J]. 上海交通大学学报(自然版), 2015, 49(06): 793-798. |
[9] | 杨旭1,彭开香1,罗浩2,KRUEGER Minjia2,宗大桥1,DING Steven X2. 基于EEMD和SVM的冷轧机垂直振动相关故障的诊断[J]. 上海交通大学学报(自然版), 2015, 49(06): 751-756. |
[10] | 李元1,吴杰1,王国柱2. k近邻补值方法在工业过程故障诊断中的应用[J]. 上海交通大学学报(自然版), 2015, 49(06): 830-836. |
[11] | 李雄杰1,2,周东华2. 混杂系统故障诊断的粒子滤波器方法[J]. 上海交通大学学报(自然版), 2015, 49(06): 849-854. |
[12] | 徐兵1,2,朱亚橙2,苏俊2,范秋敏2. 基于特征Petri网建模的冷水机组故障诊断系统[J]. 上海交通大学学报(自然版), 2015, 49(06): 923-928. |
[13] | 李艳峰,王新晴,张梅军,朱会杰. 基于奇异值分解和深度信度网络多分类器的滚动轴承故障诊断方法[J]. 上海交通大学学报(自然版), 2015, 49(05): 681-686. |
[14] | 孙旭东,谷波,田镇. 变工况条件下的纯电动车热泵系统火用性能分析[J]. 上海交通大学学报(自然版), 2015, 49(05): 608-613. |
[15] | 聂冰a,赵慧敏a,丁鸣艳b,李文a. 组态式牵引电动机故障诊断模型[J]. 上海交通大学学报(自然版), 2015, 49(03): 402-405. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||