[1]潘红兵, 蔡云龙. 基于故障树及LabVIEW的雷达设备故障诊断[J]. 电子测量技术, 2013, 36(9): 115-118.
PAN Hongbing, CAI Yunlong. Fault diagnosis of radar equipment based on fault tree and LabVIEW[J]. Electronic Measurement Technology, 2013, 36(9): 115-118.
[2]SHAN X, YANG H, ZHANG P. Fault diagnosis expert system of artillery radar based on neural network[C]∥2010 International Conference on Computer Design and Applications (ICCDA). Qinhuangdao, China: IEEE, 2010, 2: V2-426-V2-429.
[3]涂望明, 宋执环, 陈运涛, 等. 基于小波变换和LS-SVM的雷达故障诊断[J]. 控制工程, 2013, 20(2): 309-312.
TU Wangming, SONG Zhihuan, CHEN Yuntao, et al. Radar fault diagnosis based on wavelet transform and LS-SVM[J]. Control Engineering, 2013, 20 (2): 309-312.
[4]KANG J, WU K, CHI K, et al. Multi-class intelligent fault diagnosis approach based on modified relevance vector machine[C]∥2016 International Conference on Intelligent Networking and Collaborative Systems (INCOS). Ostrava, Czech Republic: IEEE, 2016: 27-30.
[5]李伟, 梁玉英, 朱赛. 基于神经网络和证据理论的信息融合在故障诊断中的应用[J]. 计算机测量与控制, 2012, 20(11): 2888-2890.
LI Wei, LIANG Yuying, ZHU Sai. Application of information fusion based on neural networks and evidence theory in fault diagnosis[J]. Computer Measurement and Control, 2012, 20 (11): 2888-2890.
[6]JAEGER H. The “echo state” approach to analysing and training recurrent neural networks[EB/OL]. [2017-05-10]. https:∥citeseerx.ist.psu.edu/showci-ting?cid=418118.
[7]LUN S X, YAO X S, QI H Y, et al. A novel model of leaky integrator echo state network for time-series prediction[J]. Neurocomputing, 2015, 159: 58-66.
[8]郭嘉, 雷苗, 彭喜元.基于相应簇回声状态网络静态分类方法[J]. 电子学报, 2011, 39(3A): 14-18.
GUO Jia, LEI Miao, PENG Xiyuan. Static classification method based on corresponding cluster echo state network[J]. Acta Electronica Sinica, 2011, (3A): 14-18.
[9]SCARDAPANE S, UNCINI A. Semi-supervised echo state networks for audio classification[J]. Cognitive Computation, 2017, 9(1): 125-135.
[10]MARTIN C E, REGGIA J A. Fusing swarm intelligence and self-assembly for optimizing echo state networks[J]. Computational Intelligence and Neuroscience, 2015(9): 1-15. doi: 10.1155/2015/642429.
[11]KUMP P, BAI E W, CHAN K, et al. Variable selection via RIVAL (removing irrelevant variables amidst Lasso iterations) and its application to nuclear material detection[J]. Automatica, 2012, 48(9): 2107-2115.
[12]XU H, ZHANG R, LIN C, et al. Novel approach of fault diagnosis in wireless sensor networks node based on rough set and neural network model[J]. International Journal of Future Generation Communication and Networking, 2016, 9(4): 1-16.
[13]YAO Y Y. Granular computing: Past, present and future[C]∥International Conference on Rough Sets and Knowledge Technology. Chengdu, China: IEEE, 2008.
[14]FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315: 972-976.
[15]CASTELLANI G C, INTRATOR N, SHOUVAL H, et al. Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons[J]. Network: Computation in Neural Systems, 1999, 10(2): 111-121.
[16]XU Z, ZHANG H, WANG Y, et al. L1/2 regularization[J]. Science China Information Sciences, 2010, 53(6): 1159-1169.
[17]DAUBECHIES I, DEVORE R, FORNASIER M, et al. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38. |