上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1218-1226.doi: 10.16183/j.cnki.jsjtu.2021.234
路林海1,2, 武朝军2,3, 孙捷城2, 才昊3, 叶冠林3()
收稿日期:
2021-06-24
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
叶冠林
E-mail:ygl@sjtu.edu.cn
作者简介:
路林海(1982-),男,河北省南宫市人,正高级工程师,从事轨道交通与地下工程研究.
基金资助:
LU Linhai1,2, WU Chaojun2,3, SUN Jiecheng2, CAI Hao3, YE Guanlin3()
Received:
2021-06-24
Online:
2022-09-28
Published:
2022-10-09
Contact:
YE Guanlin
E-mail:ygl@sjtu.edu.cn
摘要:
由于济南市泉域地层的特殊性和复杂性,第四纪沉积层虽然以黏土、粉质黏土为主,却表现出强富水、强透水的特征,在基坑工程施工中出现降水异常困难、结构渗漏水严重等一系列难题.为了明确济南红黏土层强透水的成因,从济南红黏土微观孔隙结构角度开展研究,首先对现场取样的原状红黏土开展基本物理特性试验,利用扫描电子显微镜 (SEM)获取红黏土的微观粒子排列方式.然后研发了基于计算机断层 (CT) 扫描的土体渗流装置,通过不同渗流阶段的CT扫描获取了红黏土内部孔隙三维结构并实现了孔隙水的流动可视化.最后建立孔隙网络模型(PNM)对渗流过程中土体内部孔隙和喉道的数量及体积占比进行了量化分析.结果表明:济南红黏土水平截面的颗粒搭接更为松散,孔隙结构以竖向发展为主,并存在孔径较大的联通通道;水在红黏土中优先沿着既有的大孔隙通道流动,并导致渗流通道扩张,土体内部孔径较大的联通孔道是导致土体强竖向渗透的主要原因.
中图分类号:
路林海, 武朝军, 孙捷城, 才昊, 叶冠林. 强竖向渗透济南红黏土的微观孔隙特征及CT渗流试验[J]. 上海交通大学学报, 2022, 56(9): 1218-1226.
LU Linhai, WU Chaojun, SUN Jiecheng, CAI Hao, YE Guanlin. Micropore Characteristics and CT Seepage Test of Jinan Red Clay with a Strong Vertical Permeability[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1218-1226.
[1] |
ZENG R Q, MENG X M, ZHANG F Y, et al. Characterizing hydrological processes on loess slopes using electrical resistivity tomography: A case study of the Heifangtai Terrace, Northwest China[J]. Journal of Hydrology, 2016, 541: 742-753.
doi: 10.1016/j.jhydrol.2016.07.033 URL |
[2] |
TANG Y M, XUE Q, LI Z G, et al. Three modes of rainfall infiltration inducing loess landslide[J]. Natural Hazards, 2015, 79(1): 137-150.
doi: 10.1007/s11069-015-1833-4 URL |
[3] |
ZHAO C L, SHAO M A, JIA X X, et al. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China[J]. CATENA, 2016, 143: 1-6.
doi: 10.1016/j.catena.2016.03.037 URL |
[4] |
WEI Y N, FAN W, CAO Y B. Experimental study on the vertical deformation of aquifer soils under conditions of withdrawing and recharging of groundwater in Tongchuan region, China[J]. Hydrogeology Journal, 2017, 25(2): 297-309.
doi: 10.1007/s10040-016-1498-4 URL |
[5] |
ELHAKIM A F. Estimation of soil permeability[J]. Alexandria Engineering Journal, 2016, 55(3): 2631-2638.
doi: 10.1016/j.aej.2016.07.034 URL |
[6] | 陶高梁, 李进, 崔惜琳. 不同颗粒级配的砂土渗流破坏特性[J]. 土木工程与管理学报, 2019, 36(2): 90-97. |
TAO Gaoliang, LI Jin, CUI Xilin. Seepage failure characteristics of sand with different grain composition[J]. Journal of Civil Engineering and Management, 2019, 36(2): 90-97. | |
[7] | 杨兵, 刘一飞, 万奋涛, 等. 级配特性对砂土渗透系数影响试验研究[J]. 西南交通大学学报, 2016, 51(5): 855-861. |
YANG Bing, LIU Yifei, WAN Fentao, et al. Experimental study on influence of particle-size distribution on permeability coefficient of sand[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 855-861. | |
[8] | 梁健伟. 软土变形和渗流特性的试验研究与微细观参数分析[D]. 广州: 华南理工大学, 2010. |
LIANG Jianwei. Experimental study on soft soil deformation and seepage characteristics with microscopic parameter analysis[D]. Guangzhou: South China University of Technology, 2010. | |
[9] | 陶高梁, 吴小康, 甘世朝, 等. 不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770. |
TAO Gaoliang, WU Xiaokang, GAN Shichao, et al. Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios[J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770. | |
[10] | 宋帅兵. 高庙子膨润土孔隙结构多尺度特征及其渗流特性研究[D]. 徐州: 中国矿业大学, 2020. |
SONG Shuaibing. Multi-scale characteristics of pore structure and seepage characteristics of GMZ bentonite[D]. Xuzhou: China University of Mining and Technology, 2020. | |
[11] | 黄天荣, 卢耀如, 王建秀. 滨海地区粉质黏土渗透特性试验[J]. 水运工程, 2018(5): 44-48. |
HUANG Tianrong, LU Yaoru, WANG Jianxiu. Experiment analysis on permeability of silty clay in coastal area[J]. Port & Waterway Engineering, 2018(5): 44-48. | |
[12] | 钱文见, 尚岳全, 朱森俊, 等. 粉质黏土透水性与透气性模型试验研究[J]. 水文地质工程地质, 2016, 43(5): 94-99. |
QIAN Wenjian, SHANG Yuequan, ZHU Senjun, et al. An experimental study of water permeability and air permeability of silty clay[J]. Hydrogeology & Engineering Geology, 2016, 43(5): 94-99. | |
[13] | 孙德安, 许志良. 结构性软土渗透特性研究[J]. 水文地质工程地质, 2012, 39(1): 36-41. |
SUN Dean, XU Zhiliang. Permeability of structural soft soils[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 36-41. | |
[14] |
LI B J, GARGA V K. Theoretical solution for seepage flow in overtopped rockfill[J]. Journal of Hydraulic Engineering, 1998, 124(2): 213-217.
doi: 10.1061/(ASCE)0733-9429(1998)124:2(213) URL |
[15] |
LI B J, GARGA V K, DAVIES M H. Relationships for non-darcy flow in rockfill[J]. Journal of Hydraulic Engineering, 1998, 124(2): 206-212.
doi: 10.1061/(ASCE)0733-9429(1998)124:2(206) URL |
[16] | 闫小庆. 软土孔隙结构特征与渗流特性试验研究[D]. 广州: 华南理工大学, 2014. |
YAN Xiaoqing. Experimental study on soft soil micro-pore structure characteristics and permeability properties[D]. Guangzhou: South China University of Technology, 2014. | |
[17] | 梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222-1230. |
LIANG Jianwei, FANG Yingguang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222-1230. | |
[18] | 顾中华, 高广远, 王结虎. 结构性对上海软土渗透系数影响的试验研究[J]. 探矿工程(岩土钻掘工程), 2004, 31(5): 1-3. |
GU Zhonghua, GAO Guangyuan, WANG Jiehu. Experimental study on effects of structural properties to permeability coefficient of soft clay in Shanghai[J]. Exploration Engineering (Drilling & Tunneling), 2004, 31(5): 1-3. | |
[19] |
RASMUSSEN C, HECKMAN K, WIEDER W R, et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content[J]. Biogeochemistry, 2018, 137(3): 297-306.
doi: 10.1007/s10533-018-0424-3 URL |
[20] | BOYD S A, MORTLAND M M. Enzyme interactions with clays and clay-organic matter complexes[M]. New York, USA: Marcel Dekker, 2017: 1-28. |
[21] | 张先伟, 孔令伟, 郭爱国, 等. 基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律[J]. 岩石力学与工程学报, 2012, 31(2): 406-412. |
ZHANG Xianwei, KONG Lingwei, GUO Aiguo, et al. Evolution of microscopic pore of structured clay in compression process based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 406-412. | |
[22] |
WÄHLBY C, SINTORN I M, ERLANDSSON F, et al. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections[J]. Journal of Microscopy, 2004, 215(1): 67-76.
doi: 10.1111/j.0022-2720.2004.01338.x URL |
[23] |
ZHAO B D, WANG J F. 3D quantitative shape analysis on form, roundness, and compactness with μCT[J]. Powder Technology, 2016, 291: 262-275.
doi: 10.1016/j.powtec.2015.12.029 URL |
[24] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
pmid: 21869365 |
[25] | 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4): 1133-1140. |
LIU Xiangjun, ZHU Honglin, LIANG Lixi. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4): 1133-1140. | |
[26] |
ZHAO Y X, ZHU G P, LIU S M, et al. Effects of pore structure on stress-dependent fluid flow in synthetic porous rocks using microfocus X-ray computed tomography[J]. Transport in Porous Media, 2019, 128(2): 653-675.
doi: 10.1007/s11242-019-01264-4 URL |
[27] |
WEI T T, FAN W, YUAN W N, et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau, China[J]. Environmental Earth Sciences, 2019, 78(11): 1-15.
doi: 10.1007/s12665-018-7995-0 URL |
[28] | YU B, FAN W, FAN J H, et al. X-ray micro-computed tomography (μ-CT) for 3D characterization of particle kinematics representing water-induced loess micro-fabric collapse[J]. Engineering Geology, 2020, 279: 105895. |
[1] | 何玉松,白敏丽,郝亮. 质子交换膜燃料电池微扩散层孔隙结构与渗透率的孔隙尺度模拟[J]. 上海交通大学学报, 2020, 54(10): 1053-1064. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||