上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1199-1207.doi: 10.16183/j.cnki.jsjtu.2021.089
收稿日期:
2021-03-19
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
侯东伟
E-mail:houdw@sjtu.edu.cn
作者简介:
陈小文(1996-),男,福建省福州市人,硕士生,从事水泥基材料纳米压痕表征研究.
基金资助:
CHEN Xiaowen1, HAN Yudong2, DING Xiaoping2, HOU Dongwei1()
Received:
2021-03-19
Online:
2022-09-28
Published:
2022-10-09
Contact:
HOU Dongwei
E-mail:houdw@sjtu.edu.cn
摘要:
基于微观力学测试和复合材料理论,计算水泥基材料的多尺度弹性参数,是水泥基材料基于性能的精细化设计理论基础之一.本研究对不同水灰比的硬化水泥净浆试样进行微观弹性模量的纳米压痕测试和孔隙结构压汞试验,基于多相材料均质化理论,建立考虑孔隙影响的水泥净浆弹性模量多尺度计算方法,并比较稀疏法、自洽法、Mori-Tanaka法、相互作用直推法和多层次均匀化法的适用性.计算结果表明,考虑孔隙作用的多相、多尺度计算方法与水泥净浆试件的宏观弹模测试结果吻合良好,除多层次均匀化法外,其他复合材料均匀化方法的计算结果相近.
中图分类号:
陈小文, 韩宇栋, 丁小平, 侯东伟. 水泥净浆弹性模量的纳米压痕表征与多尺度计算[J]. 上海交通大学学报, 2022, 56(9): 1199-1207.
CHEN Xiaowen, HAN Yudong, DING Xiaoping, HOU Dongwei. Multiscale Calculation of Elastic Modulus of Cement Paste Based on Grid Nanoindentation Technology[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1199-1207.
表2
不同水灰比试样的点阵纳米压痕试验结果汇总
w/c | 相 | E/GPa | 压痕点数 | 体积分数 |
---|---|---|---|---|
0.2 | PP | - | - | - |
0.2 | LDCSH | - | - | - |
0.2 | HDCSH | 29.66±7.82 | 314 | 0.79 |
0.2 | CH | 56.76±16.13 | 54 | 0.13 |
0.2 | UHP | 97.18±23.76 | 32 | 0.08 |
0.4 | PP | 10.90±6.06 | 117 | 0.29 |
0.4 | LDCSH | 21.24±4.14 | 119 | 0.30 |
0.4 | HDCSH | 31.67±4.26 | 96 | 0.24 |
0.4 | CH | 43.99±7.46 | 62 | 0.16 |
0.4 | UHP | 79.97±8.03 | 5 | 0.01 |
0.6 | PP | 11.79±5.38 | 127 | 0.32 |
0.6 | LDCSH | 21.93±4.61 | 175 | 0.44 |
0.6 | HDCSH | - | - | - |
0.6 | CH | 37.56±9.70 | 97 | 0.24 |
0.6 | UHP | - | - | - |
表3
不同水灰比试样宏观弹性模量实测值
样品编号 | w/c | E/GPa | E*/GPa | |
---|---|---|---|---|
1 | 0.2 | 35.4 | 37.1±1.6 | 35.5±10.5 |
2 | 0.2 | 38.6 | 37.1±1.6 | 35.5±10.5 |
3 | 0.2 | 37.2 | 37.1±1.6 | 35.5±10.5 |
4 | 0.4 | 21.4 | 20.2±1.5 | 19.2±9.0 |
5 | 0.4 | 20.4 | 20.2±1.5 | 19.2±9.0 |
6 | 0.4 | 18.6 | 20.2±1.5 | 19.2±9.0 |
7 | 0.6 | 12.4 | 11.8±0.8 | 11.2±5.5 |
8 | 0.6 | 11.9 | 11.8±0.8 | 11.2±5.5 |
9 | 0.6 | 10.9 | 11.8±0.8 | 11.2±5.5 |
[1] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
doi: 10.1557/JMR.1992.1564 URL |
[2] |
VELEZ K, MAXIMILIEN S, DAMIDOT D, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker[J]. Cement and Concrete Research, 2001, 31(4): 555-561.
doi: 10.1016/S0008-8846(00)00505-6 URL |
[3] |
CONSTANTINIDES G, ULM F J, VLIET K. On the use of nanoindentation for cementitious materials[J]. Materials and Structures, 2003, 36: 191-196.
doi: 10.1007/BF02479557 URL |
[4] |
CONSTANTINIDES G, CHANDRAN K S R, ULM F J, et al. Grid indentation analysis of composite microstructure and mechanics: Principles and validation[J]. Materials Science and Engineering A, 2006, 430(1/2): 189-202.
doi: 10.1016/j.msea.2006.05.125 URL |
[5] |
ULM F J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692.
doi: 10.1111/j.1551-2916.2007.02012.x URL |
[6] |
RANDALL N X, VANDAMME M, ULM F J. Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces[J]. Journal of Materials Research, 2009, 24(3): 679-690.
doi: 10.1557/jmr.2009.0149 URL |
[7] |
NĚMEČEK J, ŠMILAUER V, KOPECKÝ L. Nanoindentation characteristics of alkali-activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2): 163-170.
doi: 10.1016/j.cemconcomp.2010.10.005 URL |
[8] |
HU C L, LI Z J. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90: 80-90.
doi: 10.1016/j.conbuildmat.2015.05.008 URL |
[9] |
HU C L. Microstructure and mechanical properties of fly ash blended cement pastes[J]. Construction and Building Materials, 2014, 73: 618-625.
doi: 10.1016/j.conbuildmat.2014.10.009 URL |
[10] |
BERNARD O, ULM F J, LEMARCHAND E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials[J]. Cement and Concrete Research, 2003, 33(9): 1293-1309.
doi: 10.1016/S0008-8846(03)00039-5 URL |
[11] |
CONSTANTINIDES G, ULM F J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1): 67-80.
doi: 10.1016/S0008-8846(03)00230-8 URL |
[12] |
ZAOUI A. Continuum micromechanics: Survey[J]. Journal of Engineering Mechanics, 2002, 128(8): 808-816.
doi: 10.1061/(ASCE)0733-9399(2002)128:8(808) URL |
[13] |
SANAHUJA J, DORMIEUX L, CHANVILLARD G. Modelling elasticity of a hydrating cement paste[J]. Cement and Concrete Research, 2007, 37(10): 1427-1439.
doi: 10.1016/j.cemconres.2007.07.003 URL |
[14] |
JIANG L, ZHANG Y M, HU C L, et al. Calculation of elastic modulus of early-age cement paste[J]. Advances in Cement Research, 2012, 24(4): 193-201.
doi: 10.1680/adcr.11.00002 URL |
[15] |
GAO X, WEI Y, HUANG W. Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste[J]. Construction and Building Materials, 2017, 153: 25-35.
doi: 10.1016/j.conbuildmat.2017.07.074 URL |
[16] |
LIANG S M, WEI Y, WU Z H. Multiscale modeling elastic properties of cement-based materials considering imperfect interface effect[J]. Construction and Building Materials, 2017, 154: 567-579.
doi: 10.1016/j.conbuildmat.2017.07.196 URL |
[17] | DAMIEN D, WANG Y, XI Y P. Prediction of elastic properties of cementitious materials based on multiphase and multiscale micromechanics theory[J]. Journal of Engineering Mechanics, 2019, 145(10): 04019074. |
[18] |
PAPADOPOULOS V, IMPRAIMAKIS M. Multiscale modeling of carbon nanotube reinforced concrete[J]. Composite Structures, 2017, 182: 251-260.
doi: 10.1016/j.compstruct.2017.09.061 URL |
[19] |
XU J, WANG B B, ZUO J Q. Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach[J]. Cement and Concrete Composites, 2017, 81: 1-10.
doi: 10.1016/j.cemconcomp.2017.04.003 URL |
[20] |
GÖBEL L, BOS C, SCHWAIGER R, et al. Micromechanics-based investigation of the elastic properties of polymer-modified cementitious materials using nanoindentation and semi-analytical modeling[J]. Cement and Concrete Composites, 2018, 88: 100-114.
doi: 10.1016/j.cemconcomp.2018.01.010 URL |
[21] | ADESSINA A, BEN FRAJ A, BARTHÉLÉMY J F, et al. Experimental and micromechanical investigation on the mechanical and durability properties of re-cycled aggregates concrete[J]. Cement and Concrete Research, 2019, 126: 105900. |
[22] |
STEFANIUK D, NIEWIADOMSKI P, MUSIAŁ M, et al. Elastic properties of self-compacting concrete modified with nanoparticles: Multiscale approach[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1150-1162.
doi: 10.1016/j.acme.2019.06.006 URL |
[23] | FANG G H, ZHANG M Z. Multiscale micromecha-nical analysis of alkali-activated fly ash-slag paste[J]. Cement and Concrete Research, 2020, 135: 106141. |
[24] | ZHANG Y, YAN Z G, JU J W, et al. A multi-level micromechanical model for elastic properties of hybrid fiber reinforced concrete[J]. Construction and Buil-ding Materials, 2017, 152: 804-817. |
[25] |
HONORIO T, BROCHARD L, BARY B. Statistical variability of mechanical fields in thermo-poro-elasticity: Multiscale analytical estimations applied to cement-based materials at early-age[J]. Cement and Concrete Research, 2018, 110: 24-41.
doi: 10.1016/j.cemconres.2018.05.010 URL |
[26] |
OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.
doi: 10.1557/jmr.2004.19.1.3 URL |
[27] | 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006. |
SHEN Guanlin, HU Gengkai. Mechanics of compo-site materials[M]. Beijing: Tsinghua University Press, 2006. | |
[28] |
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574.
doi: 10.1016/0001-6160(73)90064-3 URL |
[29] |
HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222.
doi: 10.1016/0022-5096(65)90010-4 URL |
[30] |
ZHENG Q S, DU D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765-2788.
doi: 10.1016/S0022-5096(01)00078-3 URL |
[31] |
朱合华, 陈庆. 多相材料有效性能预测的高精度方法[J]. 力学学报, 2017, 49(1): 41-47.
doi: 10.6052/0459-1879-16-347 |
ZHU Hehua, CHEN Qing. An approach for predicting the effective properties of multiphase composite with high accuracy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47.
doi: 10.6052/0459-1879-16-347 |
|
[32] |
JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cement and Concrete Research, 2008, 38(3): 275-289.
doi: 10.1016/j.cemconres.2007.10.006 URL |
[33] |
JENNINGS H M, THOMAS J J, GEVRENOV J S, et al. A multi-technique investigation of the nanoporosity of cement paste[J]. Cement and Concrete Research, 2007, 37(3): 329-336.
doi: 10.1016/j.cemconres.2006.03.021 URL |
[1] | 徐捷, 王子翔, 刘玉欣, 刘冉, 杨之涛. 面向时变需求的多等级急诊患者入院控制[J]. 上海交通大学学报, 2022, 56(8): 1067-1077. |
[2] | 舒俊清, 许昱晖, 夏唐斌, 潘尔顺, 奚立峰. 面向多故障模式的多尺度相似性集成寿命预测[J]. 上海交通大学学报, 2022, 56(5): 564-575. |
[3] | 石慧荣, 王海星, 李宗刚. 考虑非线性刚度的正交切削系统稳定性[J]. 上海交通大学学报, 2022, 56(2): 191-200. |
[4] | 王利坡. 复杂系统空间结构的定量表征方法[J]. 上海交通大学学报, 2021, 55(Sup.1): 104-105. |
[5] | 陶威, 刘钊, 许灿, 朱平. 三维正交机织复合材料翼子板多尺度可靠性优化设计[J]. 上海交通大学学报, 2021, 55(5): 615-623. |
[6] | 刘昶江, 赵兵, 陈务军. 不同温度下的乙烯-三氟氯乙烯共聚物薄膜单轴拉伸试验[J]. 上海交通大学学报, 2021, 55(4): 387-393. |
[7] | 曹靖豪, 张俊举, 黄维, 姚若彤, 张平. 基于多尺度特征融合的无人机识别与检测[J]. 空天防御, 2021, 4(1): 60-64. |
[8] | 叶仙,胡洁,田畔,戚进,车大钿,丁颖. 基于精细复合多尺度熵与支持向量机的睡眠分期[J]. 上海交通大学学报(自然版), 2019, 53(3): 321-326. |
[9] | 王小庆a,b,金先龙a,b,曹源a. 大规模输水隧道水锤效应三维数值模拟[J]. 上海交通大学学报(自然版), 2016, 50(01): 98-102. |
[10] | 向可,王宣银,曹松晓. 特征尺度自动选择边缘分割方法[J]. 上海交通大学学报(自然版), 2013, 47(12): 1888-1895. |
[11] | 柯长仁1, 2, 蒋俊玲2, 葛修润1, 3. 基于虚内键模型的非均质岩石破坏数值模拟[J]. 上海交通大学学报(自然版), 2012, 46(01): 142-145. |
[12] | 刘畅, 许金泉, 孟祥琦, 李晨. 基于原子力显微镜的薄膜涂层界面观测及其变形特性[J]. 上海交通大学学报(自然版), 2011, 45(10): 1485-1488. |
[13] | 顾杨, 黄金明, 陈锦剑, 王建华. 大口径玻璃钢夹砂顶管管材的抗压性能[J]. 上海交通大学学报, 2009, 43(02): 178-181. |
[14] | 董明. 分布式能源供应链网络建模解析集成框架[J]. 上海交通大学学报(自然版), 2008, 42(11): 1772-1775. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||