上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1188-1198.doi: 10.16183/j.cnki.jsjtu.2021.169
丁恩宝1, 常晟铭1,2, 孙聪2(), 赵雷明2, 吴浩2
收稿日期:
2021-05-20
出版日期:
2022-09-28
发布日期:
2022-10-09
通讯作者:
孙聪
E-mail:suncong@hrbeu.edu.cn
作者简介:
丁恩宝(1973-),男,江苏省扬州市人,研究员,研究方向为船舶推进与节能技术.
基金资助:
DING Enbao1, CHANG Shengming1,2, SUN Cong2(), ZHAO Leiming2, WU Hao2
Received:
2021-05-20
Online:
2022-09-28
Published:
2022-10-09
Contact:
SUN Cong
E-mail:suncong@hrbeu.edu.cn
摘要:
为探究半浸桨无因次切面位置对半浸桨杯型切面入水过程水动力特性的影响,选择了半浸桨0.6、0.7、0.8无因次半径处的杯型切面进行建模.通过求解RANS方程模拟杯型切面入水过程的同时,结合流体域体积方法以及重叠网格技术,建立可靠的数值方法,研究不同切面位置的半浸桨杯型切面入水过程的水动力特性.分析不同切面位置对半浸桨杯型切面入水过程的自由液面形式、通气腔形式、流场以及表面压力分布的影响.结果表明:随着无因次半径剖面位置越靠近半浸桨的梢部,完全通气状态与部分通气状态之间的过渡状态会发生在较大的进速系数下,横向力系数和敞水效率也会有所增加.
中图分类号:
丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198.
DING Enbao, CHANG Shengming, SUN Cong, ZHAO Leiming, WU Hao. Hydrodynamic Characteristics of a Surface Piercing Propeller Entering Water with Different Radiuses[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1188-1198.
[1] |
SEYYEDI S, SHAFAGHAT R, SIAVOSHIAN M. Experimental study of immersion ratio and shaft inclination angle in the performance of a surface-piercing propeller[J]. Mechanical Sciences, 2019, 10(1): 153-167.
doi: 10.5194/ms-10-153-2019 URL |
[2] | OLOFSSON N. Force and flow characteristics of a partially submerged propeller[D]. Sweden: Chalmers University of Technology, 1996. |
[3] |
YARI E, GHASSEMI H. Numerical analysis of surface piercing propeller in unsteady conditions and cupped effect on ventilation pattern of blade cross-section[J]. Journal of Marine Science and Technology, 2016, 21(3): 501-516.
doi: 10.1007/s00773-016-0372-3 URL |
[4] | JAVANMARD E, YARI E, MEHR J A. Numerical investigation on the effect of shaft inclination angle on hydrodynamic characteristics of a surface-piercing propeller[J]. Applied Ocean Research, 2020, 98: 102108. |
[5] | NOUROOZI H, ZERAATGAR H. A reliable simulation for hydrodynamic performance prediction of surface-piercing propellers using URANS method[J]. Applied Ocean Research, 2019, 92: 101939. |
[6] |
JAVANMARDI N, GHADIMI P. Hydroelastic analysis of surface-piercing propeller through one-way and two-way coupling approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2019, 233(3): 844-856.
doi: 10.1177/1475090218791617 URL |
[7] | 任振. 不同通气形式下半浸式螺旋桨水动力性能数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
REN Zhen. The numerical study on hydrodynamic performance of surface piercing propeller with different ventilation modes[D]. Harbin: Harbin Engineering University, 2017. | |
[8] | 袁煜明. 高速滑行艇后半浸桨的水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
YUAN Yuming. Study on hydrodynamic performance of surface piercing propeller for high-speed planning craft[D]. Harbin: Harbin Engineering University, 2018. | |
[9] | 任振, 王超, 韩晓坤, 等. 浸深比对半浸桨水动力特性影响的数值分析[J]. 哈尔滨工程大学学报, 2018, 39(1): 1-9. |
REN Zhen, WANG Chao, HAN Xiaokun, et al. Numerical analysis of the influence of immersion ratio on the hydrodynamic characteristics of surface piercing propeller[J]. Journal of Harbin Engineering University, 2018, 39(1): 1-9. | |
[10] | 任振, 王超, 万德成, 等. 自然通气状态下半浸桨水动力特性数值分析[J]. 上海交通大学学报, 2018, 52(6): 636-642. |
REN Zhen, WANG Chao, WAN Decheng, et al. Numerical analysis of hydrodynamic characteristics of surface piercing propeller under naturally ventilated condition[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 636-642. | |
[11] | 袁煜明, 王超, 任振. 通气管直径对半浸式螺旋桨水动力影响[J]. 哈尔滨工程大学学报, 2019, 40(2): 227-233. |
YUAN Yuming, WANG Chao, REN Zhen. Influence of diameter of vent pipe on hydrodynamic characteristics of surface piercing propeller[J]. Journal of Harbin Engineering University, 2019, 40(2): 227-233. | |
[12] |
REN Z, LIN H, PENG H J. Numerical analysis on hydrodynamic characteristics of surface piercing propellers in oblique flow[J]. Water, 2019, 11(1): 2015.
doi: 10.3390/w11102015 URL |
[13] |
YANG D, REN Z, GUO Z, et al. Numerical analysis on the hydrodynamic performance of an artificially ventilated surface piercing propeller[J]. Water, 2018, 10(11), 1499-1511.
doi: 10.3390/w10111499 URL |
[14] |
NASRIN J, PARVIZ G, SASAN T. Probing into the effects of cavitation on hydrodynamic characteristics of surface piercing propellers through numerical modeling of oblique water entry of a thin wedge[J]. Brodogradnja, 2018, 69(2): 151-168.
doi: 10.21278/brod69109 URL |
[15] | 俞永清, 余建星, 丁恩宝, 等. 二维“杯”形随边超空泡剖面入水数值研究[J]. 船舶力学, 2008, 12(4): 539-544. |
YU Yongqing, YU Jianxing, DING Enbao, et al. Numerical research on entry water of 2D supercavitating hydrofoil section with cup at trailing edge[J]. Journal of Ship Mechanics, 2008, 12(4): 539-544. | |
[16] | 常晟铭, 丁恩宝, 王超. 半浸桨二维杯型切面入水现象的数值分析[C]// 第三十一届全国水动力学研讨会. 厦门: 海洋出版社, 2020. |
CHANG Shengming, DING Enbao, WANG Chao. Numerical analysis of the water entry of the two-dimensional cup section of surface piercing propeller[C]// The 31st National Symposium on Hydrodynamics. Xiamen, China: China Ocean Press, 2020. | |
[17] |
SCOLAN Y M. Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid[J]. Journal of Sound and Vibration, 2004, 277(1/2): 163-203.
doi: 10.1016/j.jsv.2003.08.051 URL |
[18] | OGER G, GUICHER P M, JACQUIN E, et al. Simulations of hydro-elastic impacts using a parallel SPH model[C]// The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: International Journal of Offshore and Polar Engineers, 2010. |
[19] | KHAYYER A, GOTOH H, PARK J C, et al. An enhanced fully Lagrangian coupled MPS-based solver for fluid-structure interactions[J]. Collection of Proceedings of the Civil Engineering Society B2 (Coastal Engineering), 2015, 71(2): I_883-I_888. |
[1] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[2] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[3] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[4] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[5] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[6] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[7] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[8] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
[9] | 徐德辉, 顾汉洋, 刘莉, 黄超. 新型锥形式旋叶汽水分离器热态试验与数值研究[J]. 上海交通大学学报, 2021, 55(9): 1087-1094. |
[10] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[11] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[12] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[13] | 张源, 李范春, 贾德君. 点阵压气机叶轮的设计与3D打印仿真[J]. 上海交通大学学报, 2021, 55(6): 729-740. |
[14] | 赵朋飞, 薛昕, 杨成. 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021, 55(6): 681-688. |
[15] | 吴利红, 封锡盛, 叶作霖, 李一平. 自主水下机器人强制自航下潜的类物理模拟[J]. 上海交通大学学报, 2021, 55(3): 290-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||