上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (9): 1176-1187.doi: 10.16183/j.cnki.jsjtu.2021.258
收稿日期:
2021-07-14
出版日期:
2022-09-28
发布日期:
2022-10-09
作者简介:
闯振菊(1983-),女,辽宁省本溪市人,副教授,研究方向为海上新能源及海洋工程结构;E-mail: 基金资助:
CHUANG Zhenju(), LI Chunzheng, LIU Shewen
Received:
2021-07-14
Online:
2022-09-28
Published:
2022-10-09
摘要:
基于美国可再生能源实验室的导管架式一体化海上风机模型,将计算流体力学(CFD)方法与风机一体化分析方法进行耦合,研究叶片结冰过程及其结冰后对风机整体动态性能的影响.首先将一体化分析得到的叶片运动姿态输入到CFD中,采用离散多相模型和融化-凝固模型进行三维风机叶片覆冰增长模拟,然后应用k-ε湍流模型计算结冰前后的气动性能,最后将叶片覆冰后的气动载荷结果返回到一体化分析方法中,分析叶片结冰对风机整体响应产生的影响.计算结果表明,叶片沿叶展方向结冰呈线性增加,结冰主要集中在叶片前缘,叶尖处积冰最厚;覆冰后叶片各剖面翼型升力系数降低、阻力系数升高.叶片结冰会降低整机功率、转子的转矩和转速,叶尖和塔顶产生额外振动响应,风机达到额定功率所需风速增大.
中图分类号:
闯振菊, 李春郑, 刘社文. 风机叶片结冰对其一体化结构动态响应影响的数值分析[J]. 上海交通大学学报, 2022, 56(9): 1176-1187.
CHUANG Zhenju, LI Chunzheng, LIU Shewen. Numerical Analysis of Influence of Blade Icing on Dynamic Response of Integrated Wind Turbine Structure[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1176-1187.
表2
叶片结构分布和翼型特性
叶展位置/m | 弦长/m | 扭转角/(°) | 翼型类型 |
---|---|---|---|
0 | 3.542 | 13.308 | Cylinder1 |
1.3667 | 3.542 | 13.308 | Cylinder1 |
4.1 | 3.854 | 13.308 | Cylinder1 |
6.8333 | 4.167 | 13.308 | Cylinder2 |
10.25 | 4.557 | 13.308 | DU40_A17 |
14.35 | 4.652 | 11.48 | DU35_A17 |
18.45 | 4.458 | 10.162 | DU35_A17 |
22.55 | 4.249 | 9.011 | DU30_A17 |
26.65 | 4.007 | 7.795 | DU25_A17 |
30.75 | 3.748 | 6.544 | DU25_A17 |
34.85 | 3.502 | 5.361 | DU21_A17 |
38.95 | 3.256 | 4.188 | DU21_A17 |
43.05 | 3.01 | 3.125 | NACA64_A17 |
47.15 | 2.764 | 2.319 | NACA64_A17 |
51.25 | 2.518 | 1.526 | NACA64_A17 |
54.6667 | 2.313 | 0.863 | NACA64_A17 |
57.4 | 2.086 | 0.37 | NACA64_A17 |
60.1333 | 1.419 | 0.106 | NACA64_A17 |
61.5 | 1.419 | 0.106 | NACA64_A17 |
[1] | LEHTOMÄKI V. Emerging from the cold[J]. Windpower Monthly, 2016, 32(8): 32-34. |
[2] |
HOCHART C, FORTIN G, PERRON J, et al. Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333.
doi: 10.1002/we.258 URL |
[3] |
LEHTOMÄKI V, RISSANEN S, WADHAM-GAGNON M, et al. Fatigue loads of iced turbines: Two case studies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 158: 37-50.
doi: 10.1016/j.jweia.2016.09.002 URL |
[4] | 王可光, 吴辉碇, 王彩欣, 等. 渤海冰期的基本水文气象参量研究[J]. 海洋通报, 1999, 18(2): 17-28. |
WANG Keguang, WU Huiding, WANG Caixin, et al. A study of basic hydrologic and meteorological parametersin the ice-covered Bohai Sea[J]. Marine Science Bulletin, 1999, 18(2): 17-28. | |
[5] | SHIN J, BOND T.Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]// 30th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 1992: 647. |
[6] |
HAN Y Q, PALACIOS J, SCHMITZ S. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109: 55-67.
doi: 10.1016/j.jweia.2012.06.001 URL |
[7] | 胡良权, 陈进格, 沈昕, 等. 结冰对风力机载荷的影响[J]. 上海交通大学学报, 2018, 52(8): 904-909. |
HU Liangquan, CHEN Jinge, SHEN Xin, et al. Load of wind turbine affected by icing[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 904-909. | |
[8] | SWITCHENKO D, HABASHI W, REID T, et al. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[C]// 32nd ASME Wind Energy Symposium. Reston, Virginia: AIAA, 2014: 1399. |
[9] | 蒋维, 李亚冬, 李海波, 等. 水平轴风力机桨叶覆冰数值模拟[J]. 太阳能学报, 2014, 35(1): 83-88. |
JIANG Wei, LI Yadong, LI Haibo, et al. Simulation of icing on horizontal-axis wind turbine blade[J]. Acta Energiae Solaris Sinica, 2014, 35(1): 83-88. | |
[10] | 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. |
HAO Yanpeng, LIU Guote, YANG Lin, et al. Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300. | |
[11] | 梁健, 舒立春, 胡琴, 等. 风力机叶片雨淞覆冰的三维数值模拟及试验研究[J]. 中国电机工程学报, 2017, 37(15): 4430-4436. |
LIANG Jian, SHU Lichun, HU Qin, et al. 3-D numerical simulations and experiments on glaze ice accretion of wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(15): 4430-4436. | |
[12] | 刘杰, 杨倩, 吴涛, 等. 霜冰条件下风力机翼型结冰的数值计算预测[J]. 机电一体化, 2020, 26(5): 3-11. |
LIU Jie, YANG Qian, WU Tao, et al. Numerical simulation prediction of icing on airfoil of wind turbine blade under rime ice conditions[J]. Mechatronics, 2020, 26(5): 3-11. | |
[13] |
WANG Q, XIAO J P, ZHANG T T, et al. A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method[J]. Renewable Energy, 2020, 146: 342-358.
doi: 10.1016/j.renene.2019.06.109 URL |
[14] |
WANG Q, YI X, LIU Y, et al. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model[J]. Renewable Energy, 2020, 162: 1854-1873.
doi: 10.1016/j.renene.2020.09.107 URL |
[15] | National Renewable Energy Laboratory. FAST v8[CP/OL]. (2016-07-21) [2021-07-14]. https://www.nrel.gov/wind/nwtc/fastv8.html. |
[16] | WIROGO S, SRIRAMBHATLA S. An eulerian method to calculate the collection efficiency on two and three dimensional bodies[C]// 41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 1073. |
[17] | SCHILLER L V, NAUMANN Z Z. Über die grundlegenden berechnungen bei der schwerkraftaufbereitung[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1933, 77: 318-321. |
[18] |
MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
doi: 10.2514/8.2520 URL |
[19] | JONKMAN J, BUHL M. New developments for the NWTC’s FAST aeroelastic HAWT simulator[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2004: 504. |
[20] | KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York, USA: McGraw Hill, 1985. |
[21] | POPKO W, VORPAHL F, ZUGA A, et al. Offshore code comparison collaboration continuation (OC4), Phase 1—Results of coupled simulations of an offshore wind turbine with jacket support structure[C]// The twenty-second international offshore and polar engineering conference. Rhodes, Greece: OnePetro, 2012: 337-346. |
[22] | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado: Office of Scientific and Technical Information, 2009. |
[23] | FORTIN G, LULIANO E, MINGIONE G, et al. CIRAAMIL ice accretion code improvements[C]// 1st AIAA Atmospheric and Space Environments Conference. Reston, Virginia: AIAA, 2009: 3968. |
[24] |
FU P, FARZANEH M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188.
doi: 10.1016/j.jweia.2009.10.014 URL |
[25] | HANSEN C. AirfoilPrep: An excel workbook for generating airfoil tables for AeroDyn[EB/OL].(2004-11-1) [2021. 07. 14]. https://www.nrel.gov/wind/nwtc/airfoil-prep.html. |
[1] | 胡良权,陈进格,沈昕,竺晓程,杜朝辉. 结冰对风力机载荷的影响[J]. 上海交通大学学报(自然版), 2018, 52(8): 904-909. |
[2] | 邓露1,胡缤纷1,吴松熊1,黄民希2,宋晓萍3. 气动荷载对浮式风机系泊疲劳寿命的影响分析[J]. 上海交通大学学报(自然版), 2018, 52(6): 743-749. |
[3] | 闫发锁1,张成祥1,杨慧1,彭成2. 浮式风机系统水-气动力耦合分析方法[J]. 上海交通大学学报(自然版), 2014, 48(04): 570-575. |
[4] | 刘晓晶,杨婷,严勇,程旭. 混合能谱超临界水冷堆多层燃料组件核热性能分析[J]. 上海交通大学学报(自然版), 2010, 44(01): 90-0094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||