上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 648-655.doi: 10.16183/j.cnki.jsjtu.2020.341
收稿日期:
2020-10-20
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
张文光
E-mail:zhwg@sjtu.edu.cn
作者简介:
贺雨欣(1997-),女,重庆市人,硕士生,主要从事柔性神经电极植入策略的研究.
基金资助:
HE Yuxin, ZHANG Wenguang(), XU Liyue, ZHOU Xuhui
Received:
2020-10-20
Online:
2022-05-28
Published:
2022-06-07
Contact:
ZHANG Wenguang
E-mail:zhwg@sjtu.edu.cn
摘要:
针对柔性神经电极的深度植入屈曲问题,设计一种槽形截面硅针作为辅助植入工具,为电极植入提供暂时刚度.为定量化评价辅助工具的综合性能,结合临界屈曲力和截面积,综合考虑力学性能及生物性能,提出辅助工具的性能评价指数.基于该评价指数研究槽形截面硅针的最佳槽深比及槽宽比,其中最佳槽深比为工艺要求内的极大值,最佳槽宽比随着硅针厚度的增大而增大;利用性能评价指数定量证明相对于传统的圆形截面和矩形截面硅针,槽形截面硅针具有明显的性能优势.槽形截面硅针的仿真设计有利于筛选出截面最佳参数组合,减少加工数量,降低实验成本.
中图分类号:
贺雨欣, 张文光, 许李悦, 周旭晖. 用于辅助柔性神经电极深度植入的槽形截面硅针的设计[J]. 上海交通大学学报, 2022, 56(5): 648-655.
HE Yuxin, ZHANG Wenguang, XU Liyue, ZHOU Xuhui. Design of a Grooved Cross-Section Silicon Needle for Assisting Deep Implantation of Flexible Neural Probe[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 648-655.
表2
槽形截面硅针与传统截面硅针的性能评价指数对比
h1/μm | P | T1、T2的平均 优化率/% | P | T3、T4、T5的平均 优化率/% | ||||
---|---|---|---|---|---|---|---|---|
槽形截面 | T1 | T2 | T3 | T4 | T5 | |||
30 | 4.14 | 9.39 | 6.26 | -47.09 | 3.26 | 2.10 | 3.91 | 33.98 |
40 | 7.66 | 9.09 | 10.67 | -22.47 | 5.35 | 2.72 | 6.95 | 53.00 |
50 | 12.37 | 11.79 | 11.01 | 8.50 | 7.57 | 2.94 | 10.84 | 73.82 |
60 | 18.42 | 14.04 | 10.67 | 49.09 | 9.55 | 2.72 | 15.89 | 96.24 |
70 | 25.30 | 17.49 | 11.96 | 71.82 | 13.02 | 3.41 | 21.62 | 99.47 |
[1] |
DONOGHUE J P. Bridging the brain to the world: A perspective on neural interface systems[J]. Neuron, 2008, 60(3): 511-521.
doi: 10.1016/j.neuron.2008.10.037 URL |
[2] | TORRES C V, IZA-VALLEJO B, NAVAS-GARCÍA M, et al. Deep brain stimulation in drug-resistant epilepsy[J]. Revista De Neurologia, 2020, 70(5): 183-192. |
[3] |
KOZAI T D Y, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chemical Neuroscience, 2015, 6(1): 48-67.
doi: 10.1021/cn500256e URL |
[4] |
LECOMTE A, DESCAMPS E, BERGAUD C. A review on mechanical considerations for chronically-implanted neural probes[J]. Journal of Neural Engineering, 2018, 15(3): 031001.
doi: 10.1088/1741-2552/aa8b4f URL |
[5] |
CEYSSENS F, WELKENHUYSEN M, PUERS R. Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 027001.
doi: 10.1088/1361-6439/aaf43a URL |
[6] |
WARE T, SIMON D, LIU C, et al. Thiol-ene/acrylate substrates for softening intracortical electrodes[J]. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 2014, 102(1): 1-11.
doi: 10.1002/jbmb.32946 URL |
[7] |
WARE T, SIMON D, ARREAGA-SALAS D E, et al. Fabrication of responsive, softening neural interfaces[J]. Advanced Functional Materials, 2012, 22(16): 3470-3479.
doi: 10.1002/adfm.201200200 URL |
[8] |
ZHANG S, WANG C J, GAO H, et al. A removable insertion shuttle for ultraflexible neural probe implantation with stable chronic brain electrophysiological recording[J]. Advanced Materials Interfaces, 2020, 7(6): 1901775.
doi: 10.1002/admi.201901775 URL |
[9] |
ZHAO Z G, KIM E, LUO H, et al. Flexible deep brain neural probes based on a parylene tube structure[J]. Journal of Micromechanics and Microengineering, 2018, 28(1): 015012.
doi: 10.1088/1361-6439/aa9d61 URL |
[10] |
JOO H R, FAN J L, CHEN S, et al. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain[J]. Journal of Neural Engineering, 2019, 16(6): 066021.
doi: 10.1088/1741-2552/ab2b2e URL |
[11] | NA K, SPERRY Z J, LU J, et al. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression[J]. Microsystems & Nanoengineering, 2020, 6: 37. |
[12] |
LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 2017, 3(2): e1601966.
doi: 10.1126/sciadv.1601966 URL |
[13] |
ZHAO Z, LI X, HE F, et al. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays[J]. Journal of Neural Engineering, 2019, 16(3): 035001.
doi: 10.1088/1741-2552/ab05b6 URL |
[14] |
ZHANG W G, MA Y K, LI Z W. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method[J]. Medical Physics, 2016, 43(1): 505-512.
doi: 10.1118/1.4938064 URL |
[15] |
HARRIS J P, HESS A E, ROWAN S J, et al. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes[J]. Journal of Neural Engineering, 2011, 8(4): 046010.
doi: 10.1088/1741-2560/8/4/046010 URL |
[16] |
REZAEI S, XU Y, PANG S W. Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate[J]. PLoS One, 2019, 14(7): e0220258.
doi: 10.1371/journal.pone.0220258 URL |
[17] | FELIX S H, SHAH K G, TOLOSA V M, et al. Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive[J]. Journal of Visualized Experiments, 2013(79): e50609. |
[18] |
ANDREI A, WELKENHUYSEN M, NUTTIN B, et al. A response surface model predicting the in vivo insertion behavior of micromachined neural implants[J]. Journal of Neural Engineering, 2012, 9(1): 016005.
doi: 10.1088/1741-2560/9/1/016005 URL |
[19] | 黎立云, 刘大安. 中心受压杆安全系数的选取[J]. 力学与实践, 1983, 5(4): 47-49. |
LI Liyun, LIU Da’an. Selection of safety factor of central compression bar[J]. Mechanics and Engineering, 1983, 5(4): 47-49. | |
[20] | 凌伟, 文毅, 殷民. 材料力学[M]. 西安: 西安交通大学出版社, 2014. |
LING Wei, WEN Yi, YIN Min. Mechanics of materials[M]. Xi’an: Xi’an Jiaotong University Press, 2014. |
[1] | 谢颉, 张文光, 尹雪乐, 李伟. 基于正交试验方法的柔性神经电极优化设计[J]. 上海交通大学学报, 2020, 54(8): 785-791. |
[2] | 李伟, 张文光, 于谦, 谢颉. 沉积工艺对聚苯胺涂层电学性能的影响及其抗磨损性能[J]. 上海交通大学学报, 2020, 54(8): 778-784. |
[3] | 崔雯,王冬梅,王成焘,黄庆丰,张富强. 可摘局部义齿不同加载条件下的三维有限元分析 [J]. 上海交通大学学报(自然版), 2010, 44(11): 1588-1594. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||