上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 635-647.doi: 10.16183/j.cnki.jsjtu.2020.329
周希瑞1, 王平1(), 曾海翔1, 张洋1, PRASHANT Shrotriya2, ANTONIO Ferrante1,3, 祁浩天1
收稿日期:
2020-10-15
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
王平
E-mail:pingwang@ujs.edu.cn
作者简介:
周希瑞(1996-),男,江苏省宿迁市人,硕士生,研究方向为湍流燃烧的大涡模拟.
基金资助:
ZHOU Xirui1, WANG Ping1(), ZENG Haixiang1, ZHANG Yang1, PRASHANT Shrotriya2, ANTONIO Ferrante1,3, QI Haotian1
Received:
2020-10-15
Online:
2022-05-28
Published:
2022-06-07
Contact:
WANG Ping
E-mail:pingwang@ujs.edu.cn
摘要:
利用大涡模拟法计算研究甲烷和掺氢燃气在悉尼非均匀入流射流燃烧器上的吹熄极限.利用GRI 3.0详细反应机理和28步、19步简化反应机理对比计算不同掺氢燃气状态下的层流预混火焰,证明了19步简化反应机理具有良好性能.利用动态增厚火焰燃烧模型结合19步反应机理,计算研究以掺氢燃气(体积比V(H2):V(CH4):V(CO):V(CO2)=0.2:0.2:0.27:0.33)为燃料的悉尼部分预混中心射流火焰.计算得到在FA和FJ布局下,掺氢燃气的火焰吹熄极限速度分别为90 m/s和109 m/s,甲烷的火焰吹熄极限速度分别为74 m/s和128 m/s,分析发现吹熄极限的差异与不同布局下燃气与空气混合不均匀程度相关.研究表明,优化燃气与空气的进气布局和掺混过程可以提升燃烧稳定性.
中图分类号:
周希瑞, 王平, 曾海翔, 张洋, PRASHANT Shrotriya, ANTONIO Ferrante, 祁浩天. 甲烷及掺氢燃气吹熄极限的大涡模拟研究[J]. 上海交通大学学报, 2022, 56(5): 635-647.
ZHOU Xirui, WANG Ping, ZENG Haixiang, ZHANG Yang, PRASHANT Shrotriya, ANTONIO Ferrante, QI Haotian. Large Eddy Simulation on Blow-Off Limit of Methane and Hydrogen-Mixed Gas[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 635-647.
[1] |
GICQUEL L Y M, STAFFELBACH G, POINSOT T. Large Eddy Simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.
doi: 10.1016/j.pecs.2012.04.004 URL |
[2] |
SYRED N, BEÉR J M. Combustion in swirling flows: A review[J]. Combustion and Flame, 1974, 23(2): 143-201.
doi: 10.1016/0010-2180(74)90057-1 URL |
[3] |
MEARES S, MASRI A R. A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures[J]. Combustion and Flame, 2014, 161(2): 484-495.
doi: 10.1016/j.combustflame.2013.09.016 URL |
[4] |
BARLOW R S, MEARES S, MAGNOTTI G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets[J]. Combustion and Flame, 2015, 162(10): 3516-3540.
doi: 10.1016/j.combustflame.2015.06.009 URL |
[5] |
GUIBERTI T F, CUTCHER H, ROBERTS W L, et al. Influence of pilot flame parameters on the stability of turbulent jet flames[J]. Energy & Fuels, 2017, 31(3): 2128-2137.
doi: 10.1021/acs.energyfuels.6b02052 URL |
[6] |
GUIBERTI T F, JUDDOO M, LACOSTE D A, et al. Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1777-1784.
doi: 10.1016/j.proci.2016.08.051 URL |
[7] |
CUTCHER H C, BARLOW R S, MAGNOTTI G, et al. Turbulent flames with compositionally inhomogeneous inlets: Resolved measurements of scalar dissipation rates[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1737-1745.
doi: 10.1016/j.proci.2016.07.093 URL |
[8] |
PERRY B A, MUELLER M E, MASRI A R. A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1767-1775.
doi: 10.1016/j.proci.2016.07.029 URL |
[9] |
GALINDO S, SALEHI F, CLEARY M J, et al. MMC-LES simulations of turbulent piloted flames with varying levels of inlet inhomogeneity[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1759-1766.
doi: 10.1016/j.proci.2016.07.055 URL |
[10] |
KLEINHEINZ K, KUBIS T, TRISJONO P, et al. Computational study of flame characteristics of a turbulent piloted jet burner with inhomogeneous inlets[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1747-1757.
doi: 10.1016/j.proci.2016.07.067 URL |
[11] |
KIM N, KIM Y. Multi-environment probability density function approach for turbulent partially-premixed methane/air flame with inhomogeneous inlets[J]. Combustion and Flame, 2017, 182: 190-205.
doi: 10.1016/j.combustflame.2017.04.020 URL |
[12] |
FRANZELLI B, RIBER E, GICQUEL L Y M, et al. Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame[J]. Combustion and Flame, 2012, 159(2): 621-637.
doi: 10.1016/j.combustflame.2011.08.004 URL |
[13] | 曾海翔. 基于DTF模型的部分预混火焰大涡模拟研究[D]. 镇江: 江苏大学, 2020. |
ZENG Haixiang. Large eddy simulation of partially premixed flame based on DTF model[D]. Zhenjiang: Jiangsu University, 2020. | |
[14] |
HALTER F, CHAUVEAU C, GÖKALP I. Characterization of the effects of hydrogen addition in premixed methane/air flames[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2585-2592.
doi: 10.1016/j.ijhydene.2006.11.033 URL |
[15] |
ZHAO K, CUI D W, XU T M, et al. Effects of hydrogen addition on methane combustion[J]. Fuel Processing Technology, 2008, 89(11): 1142-1147.
doi: 10.1016/j.fuproc.2008.05.005 URL |
[16] |
TOSHIMITSU K, MATSUO A, KAMEL M R, et al. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows[J]. Journal of Propulsion and Power, 2000, 16(1): 16-21.
doi: 10.2514/2.5558 URL |
[17] |
LYTRAS I, KOUTMOS P, DOGKAS E. Reduced kinetic models for methane flame simulations[J]. Combustion, Explosion, and Shock Waves, 2019, 55(2): 132-147.
doi: 10.1134/S0010508219020023 URL |
[18] | 王平, 侯天增, 余倩. 火焰增厚燃烧模型计算旋转预混火焰的参数敏感性分析[J]. 推进技术, 2018, 39(2): 358-365. |
WANG Ping, HOU Tianzeng, YU Qian. Large eddy simulation of premixed swirling flames with thickened-flame model: A sensitivity study[J]. Journal of Propulsion Technology, 2018, 39(2): 358-365. |
[1] | 徐振东, 段宇轩, 徐华松, 杨帆, 李铁. 当地DFD方法向LES湍流模拟推广的研究[J]. 空天防御, 2022, 5(3): 93-98. |
[2] | 曾海翔, 王平, SHROTRIYA Prashant, 姜霖松, MURUGESAN Meenatchidevi. 带有局部熄火现象的部分预混火焰大涡模拟研究[J]. 上海交通大学学报, 2022, 56(1): 35-44. |
[3] | 孙翀, 田甜, 竺晓程, 杜朝辉. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56(1): 45-52. |
[4] | 郭志远, 虞培祥, 欧阳华. 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021, 55(8): 924-933. |
[5] | 刘宏升1,姜霖松1,吴丹2,解茂昭1. 基于大涡模拟的三维随机球堆积床内湍流流动特性[J]. 上海交通大学学报(自然版), 2018, 52(9): 1050-1057. |
[6] | 高云1, 2,王盟浩1,宗智3,邹丽3,彭庚1. 高雷诺数时分离盘长度对圆柱绕流特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 504-. |
[7] | 张允, 傅慧萍, 缪国平. 基于大涡模拟的开孔潜体流噪声数值模拟[J]. 上海交通大学学报(自然版), 2011, 45(12): 1868-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||