上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (1): 35-44.doi: 10.16183/j.cnki.jsjtu.2019.298
曾海翔a, 王平b(), SHROTRIYA Prashanta, 姜霖松b, MURUGESAN Meenatchidevib
收稿日期:
2020-10-22
出版日期:
2022-01-28
发布日期:
2022-01-21
通讯作者:
王平
E-mail:pingwang@ujs.edu.cn
作者简介:
曾海翔(1994-),男,河南省信阳市人,硕士生,主要研究方向为湍流燃烧、大涡模拟.
基金资助:
ZENG Haixianga, WANG Pingb(), SHROTRIYA Prashanta, JIANG Linsongb, MURUGESAN Meenatchidevib
Received:
2020-10-22
Online:
2022-01-28
Published:
2022-01-21
Contact:
WANG Ping
E-mail:pingwang@ujs.edu.cn
摘要:
对带有局部熄火现象的悉尼部分预混火焰FJ200-5GP-Lr75-103算例进行大涡模拟研究,计算中采用动态k方程亚格子模型和动态增厚火焰(DTF)燃烧模型.考虑当量比变化对层流火焰厚度和速度的影响,在DTF模型中引入两个拟合函数,可根据流场中混合分数的变化自适应调整火焰褶皱函数中的层流火焰参数.研究结果表明,动态k方程模型很好地预测了非均匀预混气的混合分数变化;对于熄火现象比较严重的中下游区域,大涡模拟计算得到的温度、组分的统计信息及温度散点图分布规律与实验数据吻合良好;改进后的DTF模型较好地捕捉到了悉尼非均匀入流部分预混火焰的局部熄火现象, 但对于流场下游CO质量分数的预测,计算值比实验结果存在一些偏离.
中图分类号:
曾海翔, 王平, SHROTRIYA Prashant, 姜霖松, MURUGESAN Meenatchidevi. 带有局部熄火现象的部分预混火焰大涡模拟研究[J]. 上海交通大学学报, 2022, 56(1): 35-44.
ZENG Haixiang, WANG Ping, SHROTRIYA Prashant, JIANG Linsong, MURUGESAN Meenatchidevi. Large Eddy Simulation of Partially Premixed Flame with Local Extinction Phenomenon[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 35-44.
[1] | EZEQUIEL J L, HORACIO J A, CESAR L P, et al. Numerical simulation of partially premixed combustion using a flame surface density approach[EB/OL].(2017-11-27) [2019-01-10]. https://xueshu.baidu.com/usercenter/paper/show?paperid=08d2bd52495efb043e88761d9f470a7c&site=xueshu_se. |
[2] |
AGGARWAL S K, PURI I K. Flame structure interactions and state relationships in an unsteady partially premixed flame[J]. AIAA Journal, 1998, 36(7):1190-1199.
doi: 10.2514/2.530 URL |
[3] |
NAHA S, AGGARWAL S K. Fuel effects on NOx emissions in partially premixed flames[J]. Combustion and Flame, 2004, 139(1/2):90-105.
doi: 10.1016/j.combustflame.2004.07.006 URL |
[4] |
OMAR S K, GEYER D, DREIZLER A, et al. Investigation of flame structures in turbulent partially premixed counter-flow flames using planar laser-induced fluorescence[J]. Progress in Computational Fluid Dynamics, an International Journal, 2004, 4(3/4/5):241.
doi: 10.1504/PCFD.2004.004092 URL |
[5] |
LOCK A J, BRIONES A M, QIN X, et al. Liftoff characteristics of partially premixed flames under normal and microgravity conditions[J]. Combustion and Flame, 2005, 143(3):159-173.
doi: 10.1016/j.combustflame.2005.05.011 URL |
[6] |
ELBAZ A M, SENOSY M S, ZAYED M F, et al. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow[J]. Experimental Thermal and Fluid Science, 2018, 95:2-10.
doi: 10.1016/j.expthermflusci.2018.01.010 URL |
[7] |
KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157(9):1731-1744.
doi: 10.1016/j.combustflame.2010.04.006 URL |
[8] |
STÖHR M, ARNDT C M, MEIER W. Transient effects of fuel-air mixing in a partially-premixed turbulent swirl flame[J]. Proceedings of the Combustion Institute, 2015, 35(3):3327-3335.
doi: 10.1016/j.proci.2014.06.095 URL |
[9] |
RAMAN V, FOX R O, HARVEY A D. Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame[J]. Combustion and Flame, 2004, 136(3):327-350.
doi: 10.1016/j.combustflame.2003.10.012 URL |
[10] |
HEGETSCHWEILER M, JENNY P. An approach to model partially premixed turbulent combustion with probability density function (PDF) methods[J]. PAMM, 2006, 6(1):521-522.
doi: 10.1002/(ISSN)1617-7061 URL |
[11] |
KRONENBURG A, STEIN O T. LES-CMC of a partially premixed, turbulent dimethyl ether jet diffusion flame[J]. Flow, Turbulence and Combustion, 2017, 98(3):803-816.
doi: 10.1007/s10494-016-9788-4 URL |
[12] |
HU Y, KUROSE R. Partially premixed flamelet in LES of acetone spray flames[J]. Proceedings of the Combustion Institute, 2019, 37(3):3327-3334.
doi: 10.1016/j.proci.2018.06.020 URL |
[13] |
BUTLER T D, O’ROURKE P J. A numerical method for two dimensional unsteady reacting flows[J]. Symposium (International) on Combustion, 1977, 16(1):1503-1515.
doi: 10.1016/S0082-0784(77)80432-3 URL |
[14] |
COLIN O, DUCROS F, VEYNANTE D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863.
doi: 10.1063/1.870436 URL |
[15] |
WANG G, BOILEAU M, VEYNANTE D. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Combustion and Flame, 2011, 158(11):2199-2213.
doi: 10.1016/j.combustflame.2011.04.008 URL |
[16] |
KUENNE G, KETELHEUN A, JANICKA J. LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry[J]. Combustion and Flame, 2011, 158(9):1750-1767.
doi: 10.1016/j.combustflame.2011.01.005 URL |
[17] |
FRANZELLI B, RIBER E, GICQUEL L Y M, et al. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame[J]. Combustion and Flame, 2012, 159(2):621-637.
doi: 10.1016/j.combustflame.2011.08.004 URL |
[18] | LEGIER J P, POINSOT T, VEYNANTE D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[J]. Proceedings of the Summer Program, Centre for Turbulence Research, 2000: 157-168. |
[19] |
PROCH F, KEMPF A M. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry[J]. Combustion and Flame, 2014, 161(10):2627-2646.
doi: 10.1016/j.combustflame.2014.04.010 URL |
[20] |
KUENNE G, KETELHEUN A, JANICKA J. LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry[J]. Combustion and Flame, 2011, 158(9):1750-1767.
doi: 10.1016/j.combustflame.2011.01.005 URL |
[21] | 张科, 尚明涛, 罗坤, 等. 基于动态全增厚火焰模型对甲烷/空气非预混燃烧的大涡模拟[J]. 工程热物理学报, 2012, 33(10):1823-1826. |
ZHANG Ke, SHANG Mingtao, LUO Kun, et al. Large-eddy simulation of methane/air non-premixed combustion using dynamically full thickened flame model[J]. Journal of Engineering Thermophysics, 2012, 33(10):1823-1826. | |
[22] | HUANG S H, LI Q S. A new dynamic one-equation subgrid-scale model for large eddy simulations[J]. International Journal for Numerical Methods in Engineering, 2010, 81(7):835-865. |
[23] |
BARLOW R S, MEARES S, MAGNOTTI G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets[J]. Combustion and Flame, 2015, 162(10):3516-3540.
doi: 10.1016/j.combustflame.2015.06.009 URL |
[24] |
FRANZELLI B, RIBER E, CUENOT B. Impact of the chemical description on a large eddy simulation of a lean partially premixed swirled flame[J]. Comptes Rendus Mécanique, 2013, 341(1/2):247-256.
doi: 10.1016/j.crme.2012.11.007 URL |
[25] |
LU T F, LAW C K. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry[J]. Combustion and Flame, 2008, 154(4):761-774.
doi: 10.1016/j.combustflame.2008.04.025 URL |
[26] |
TOSHIMITSU K, MATSUO A, KAMEL M R, et al. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows[J]. Journal of Propulsion and Power, 2000, 16(1):16-21.
doi: 10.2514/2.5558 URL |
[1] | 周希瑞, 王平, 曾海翔, 张洋, PRASHANT Shrotriya, ANTONIO Ferrante, 祁浩天. 甲烷及掺氢燃气吹熄极限的大涡模拟研究[J]. 上海交通大学学报, 2022, 56(5): 635-647. |
[2] | 徐振东, 段宇轩, 徐华松, 杨帆, 李铁. 当地DFD方法向LES湍流模拟推广的研究[J]. 空天防御, 2022, 5(3): 93-98. |
[3] | 孙翀, 田甜, 竺晓程, 杜朝辉. 风力机翼型非定常流场POD和EPOD分析[J]. 上海交通大学学报, 2022, 56(1): 45-52. |
[4] | 郭志远, 虞培祥, 欧阳华. 基于大涡模拟的圆柱绕流剪切层不稳定性[J]. 上海交通大学学报, 2021, 55(8): 924-933. |
[5] | 刘宏升1,姜霖松1,吴丹2,解茂昭1. 基于大涡模拟的三维随机球堆积床内湍流流动特性[J]. 上海交通大学学报(自然版), 2018, 52(9): 1050-1057. |
[6] | 高云1, 2,王盟浩1,宗智3,邹丽3,彭庚1. 高雷诺数时分离盘长度对圆柱绕流特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 504-. |
[7] | 张允, 傅慧萍, 缪国平. 基于大涡模拟的开孔潜体流噪声数值模拟[J]. 上海交通大学学报(自然版), 2011, 45(12): 1868-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||