上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (5): 656-663.doi: 10.16183/j.cnki.jsjtu.2020.437
郭涛1,2, 刘明明1, 曹蕾1(), 胡京招1, 洪国军1, 尤云祥2
收稿日期:
2020-12-23
出版日期:
2022-05-28
发布日期:
2022-06-07
通讯作者:
曹蕾
E-mail:Caolei@cccc-drc.com
作者简介:
郭涛(1984-),男,山东省德州市人,博士,高级工程师,从事流体力学、多物理场耦合研究.
基金资助:
GUO Tao1,2, LIU Mingming1, CAO Lei1(), HU Jingzhao1, HONG Guojun1, YOU Yunxiang2
Received:
2020-12-23
Online:
2022-05-28
Published:
2022-06-07
Contact:
CAO Lei
E-mail:Caolei@cccc-drc.com
摘要:
为求解疏浚泵内沙粒的瞬态运动,以ANSYS Fluent的离散相模型为基础实现了一种修正算法.在稠密流动中以Lagrangian方法追踪沙粒时,引入用欧拉方法描述的粒-液两相求解得到的粒相体积分数以及Huilin-Gidaspow曳力模型,将先更新叶轮网格再求解沙粒运动的过程转变为叶轮网格与颗粒同步旋转后再求解颗粒相对运动的过程,以避免粒子在运动壁面上碰撞判定及反弹速度计算的错误.对比数值结果发现,改进算法能够在相近的计算时间下显著提高泵内颗粒运动的追踪精度.改进算法预测叶轮上的冲蚀磨损主要发生在叶片前缘偏上部位,冲蚀率峰值达7×10-5 kg/(m2∙s)以上,这与真实磨损的位置和程度相近,验证了修正算法的有效性.
中图分类号:
郭涛, 刘明明, 曹蕾, 胡京招, 洪国军, 尤云祥. 疏浚泵内泥沙颗粒的瞬态追踪数值方法[J]. 上海交通大学学报, 2022, 56(5): 656-663.
GUO Tao, LIU Mingming, CAO Lei, HU Jingzhao, HONG Guojun, YOU Yunxiang. A Numerical Method for Transient Tracking of Sediment Particles in Dredge Pump[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 656-663.
[1] | ANSYS INC. ANSYS Fluent 2020 R2 theory guide[EB/OL].(2020-07-15)[2020-10-20]. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v202/en/flu_th/flu_th_chp_discrete.html. |
[2] | 吴波. 渣浆泵固液两相三维湍流及冲蚀磨损特性研究[D]. 长沙: 中南大学, 2010. |
WU Bo. Research on solid-liquid two-phase three-dimensional turbulence and erosion characteristics of slurry pump[D]. Changsha: Central South University, 2010. | |
[3] |
PAGALTHIVARTHI K V, GUPTA P K, TYAGI V, et al. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows[J]. The Journal of Computational Multiphase Flows, 2011, 3(4): 225-245.
doi: 10.1260/1757-482X.3.4.225 URL |
[4] | 李亚林, 袁寿其, 汤跃, 等. 离心泵内示踪粒子运动的离散相模型模拟[J]. 农业机械学报, 2012, 43(11): 113-118. |
LI Yalin, YUAN Shouqi, TANG Yue, et al. Simulation of tracer particles movement by discrete phase model in the centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 113-118. | |
[5] |
PENG G J, WANG Z W, XIAO Y X, et al. Abrasion predictions for Francis turbines based on liquid-solid two-phase fluid simulations[J]. Engineering Failure Analysis, 2013, 33: 327-335.
doi: 10.1016/j.engfailanal.2013.06.002 URL |
[6] | 邹伟生, 卢勇, 李哲奂. 深海采矿提升泵的数值模拟分析[J]. 湖南大学学报(自然科学版), 2013, 40(6): 59-63. |
ZOU Weisheng, LU Yong, LI Zhehuan. Numerical simulation and analyses of lift pump in deep sea mining[J]. Journal of Hunan University (Natural Sciences), 2013, 40(6): 59-63. | |
[7] | ZHU H W, ZHU J J, RUTTER R, et al. Sand erosion model prediction, selection and comparison for electrical submersible pump (ESP) using CFD method[C]// Proceedings of ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. Montreal, Montreal, Canada: ASME, 2018. |
[8] |
SHEN Z J, CHU W L, LI X J, et al. Sediment erosion in the impeller of a double-suction centrifugal pump-A case study of the Jingtai Yellow River Irrigation Project, China[J]. Wear, 2019, 422/423: 269-279.
doi: 10.1016/j.wear.2019.01.088 URL |
[9] |
CHEN X L, ZHONG W Q, SUN B B, et al. Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD-DPM approach[J]. Powder Technology, 2012, 217: 252-260.
doi: 10.1016/j.powtec.2011.10.034 URL |
[10] |
ADAMCZYK W P, KLIMANEK A, BIAŁECKI R A, et al. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J]. Particuology, 2014, 15: 129-137.
doi: 10.1016/j.partic.2013.06.008 URL |
[11] |
CHEN W, REN Y, ZHANG L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES+VOF+DPM model[J]. JOM, 2019, 71(3): 1158-1168.
doi: 10.1007/s11837-018-3255-8 URL |
[12] |
HUANG S, SU X H, QIU G Q. Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 411-418.
doi: 10.1080/19942060.2015.1048619 URL |
[13] |
LIU D, TANG C, DING S C, et al. CFD-DEM si-mulation for distribution and motion feature of crystal particles in centrifugal pump[J]. International Journal of Fluid Machinery and Systems, 2017, 10(4): 378-384.
doi: 10.5293/IJFMS.2017.10.4.378 URL |
[14] |
TANG C, KIM Y J. CFD-DEM simulation for the distribution and motion feature of solid particles in single-channel pump[J]. Energies, 2020, 13(19): 4988.
doi: 10.3390/en13194988 URL |
[15] | LI Y W, LIU S J, HU X Z. Research on rotating speed’s influence on performance of deep-sea lifting motor pump based on DEM-CFD[J]. Marine Georesources & Geotechnology, 2019, 37(8): 979-988. |
[16] |
SU X H, TANG Z J, LI Y, et al. Research of particle motion in a two-stage slurry transport pump for deep-ocean mining by the CFD-DEM method[J]. Energies, 2020, 13(24): 6711.
doi: 10.3390/en13246711 URL |
[17] | 李仁年, 辛芳, 韩伟, 等. 基于DDPM的螺旋离心泵磨蚀特性分析[J]. 兰州理工大学学报, 2017, 43(3): 54-60. |
LI Rennian, XIN Fang, HAN Wei, et al. Analysis of erosion characteristics of screw centrifugal pump based on DDPM[J]. Journal of Lanzhou University of Technology, 2017, 43(3): 54-60. | |
[18] |
MESSA G V, FERRARESE G, MALAVASI S. A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction[J]. Wear, 2015, 342/343: 138-153.
doi: 10.1016/j.wear.2015.08.015 URL |
[19] |
LU H L, GIDASPOW D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792.
doi: 10.1016/S0009-2509(03)00238-0 URL |
[20] | WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
[21] | ERGUN S. Fluid flow through packed column[J]. Journal of Materials Science and Chemical Engineering, 1952, 48(2): 89-94. |
[22] |
GRANT G, TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 1975, 12(5): 471-478.
doi: 10.2514/3.59826 URL |
[23] |
OKA Y I, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259: 102-109.
doi: 10.1016/j.wear.2005.01.040 URL |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 刘勖诚, 谷波, 曾炜杰, 杜仲星, 田镇. 小通道内制冷剂两相流动摩擦压降关联式分析[J]. 上海交通大学学报, 2021, 55(9): 1095-1107. |
[3] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[4] | 李煜, 程广益, 李宗阳, 窦怡彬, 蒋君庭. 固体火箭发动机喷管两相流动下的热固耦合研究[J]. 空天防御, 2020, 3(1): 1-9. |
[5] | 谢行,任慧龙,陶凯东,冯亿坤. 应用改进流体体积法的楔形体斜向入水研究[J]. 上海交通大学学报, 2020, 54(1): 20-27. |
[6] | 王雨风,王丹东,胡记超,陈亮,陈江平. 两相流CO2喷射器内部流场的数值模型[J]. 上海交通大学学报, 2019, 53(7): 860-865. |
[7] | 郭秦阳,施光林,王冬梅. 间歇激励条件下电液伺服系统的复合自适应控制[J]. 上海交通大学学报, 2019, 53(6): 639-646. |
[8] | 邹良旭,马非,孟昭男,张鹏. 基于群体平衡模型的冰浆流动与传热特性数值研究[J]. 上海交通大学学报, 2019, 53(12): 1459-1465. |
[9] | 唐宜家, 马天寿, 何玉发, 陈平. 深水井筒两相流温度分布计算方法研究[J]. 海洋工程装备与技术, 2018, 5(增刊): 204-208. |
[10] | 邹旭毛,李良星,孔刘波,王华胜. 颗粒堆积床内两相流动阻力及相间摩擦力[J]. 上海交通大学学报(自然版), 2017, 51(4): 470-. |
[11] | 刘勇1,陈炉云2. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报(自然版), 2017, 51(4): 485-. |
[12] | 梅登飞,范浩杰,田凤国,崔璇,章明川. 黏性与非黏性颗粒在流化床中的气泡行为模拟[J]. 上海交通大学学报(自然版), 2015, 49(05): 577-582. |
[13] | 李文升, 郭烈锦, 李乃良, 程兵, 姚海元. 集输-S型立管中空气-油两相流流型特征实验研究[J]. 海洋工程装备与技术, 2014, 1(1): 30-34. |
[14] | 张如许1,胡海涛2,庄大伟2,丁国良2,向量3,魏文建3. 板式换热器内两相流流量分配的模拟及实验验证[J]. 上海交通大学学报(自然版), 2014, 48(06): 788-792. |
[15] | 王小川a,b,贺国a,c,郭朝有b,李雁飞b. 旋流强度对气/雾两相传热传质的影响[J]. 上海交通大学学报(自然版), 2013, 47(11): 1767-1772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||