上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (10): 1255-1262.doi: 10.16183/j.cnki.jsjtu.2020.157
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“机械工程”专题
收稿日期:
2020-06-01
出版日期:
2021-10-28
发布日期:
2021-11-01
通讯作者:
夏唐斌
E-mail:xtbxtb@sjtu.edu.cn
作者简介:
卓鹏程(1994-),男,硕士生,安徽省宿州市人,主要研究方向为基于数据驱动的设备健康管理.
基金资助:
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin(), XI Lifeng
Received:
2020-06-01
Online:
2021-10-28
Published:
2021-11-01
Contact:
XIA Tangbin
E-mail:xtbxtb@sjtu.edu.cn
摘要:
针对高背景噪声下滚动轴承全生命周期(轻度退化、中度退化、重度退化)故障诊断需求,提出GA-OIHF (Genetic Algorithm-Output Input Hidden Feedback) Elman神经网络模型,实现退化故障的精准诊断.利用集合经验模态分解对振动信号进行有效降噪与故障特征提取.设计OIHF Elman神经网络,并在Elman神经网络结构的基础上,同时增加输出层对隐含层与输入层的反馈,进一步提高其对滚动轴承全生命周期数据的处理能力.然后,通过结合遗传算法构建一种新的GA-OIHF Elman神经网络模型,该模型综合了遗传算法的全局寻优与OIHF Elman神经网络的局部寻优能力,从而实现对滚动轴承全生命周期的精确故障诊断.实验结果表明,所提出的GA-OIHF Elman方法不仅对于滚动轴承全生命周期故障具有准确的诊断效果,而且保证了诊断模型对于不同故障(不同故障部件与不同故障时期)的诊断稳定性.
中图分类号:
卓鹏程, 严瑾, 郑美妹, 夏唐斌, 奚立峰. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262.
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin, XI Lifeng. GA-OIHF Elman Neural Network Algorithm for Fault Diagnosis of Full Life Cycle of Rolling Bearing[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262.
表3
基于GA-OIHF Elman神经网络模型的全生命周期故障诊断MSE
故障状态与 故障部件 | 神经网络类型 | |
---|---|---|
正常 | OIHF Elman | 3.21×10-14 |
GA-OIHF Elman | 0.0087 | |
轻度退化 | OIHF Elman | 0.0022 |
GA-OIHF Elman | 0.0043 | |
中度退化 | OIHF Elman | 0.0316 |
GA-OIHF Elman | 0.0186 | |
重度退化 | OIHF Elman | 0.0069 |
GA-OIHF Elman | 0.0036 | |
滚动体 | OIHF Elman | 0.0061 |
GA-OIHF Elman | 0.0079 | |
内圈 | OIHF Elman | 0.0113 |
GA-OIHF Elman | 0.0039 | |
外圈 | OIHF Elman | 0.0270 |
GA-OIHF Elman | 0.0164 |
[1] |
HUANG W T, SUN H J, LUO J N, et al. Periodic feature oriented adapted dictionary free OMP for rolling element bearing incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 126:137-160.
doi: 10.1016/j.ymssp.2019.02.023 URL |
[2] |
XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178:255-268.
doi: 10.1016/j.ress.2018.06.021 URL |
[3] |
XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115:103182.
doi: 10.1016/j.compind.2019.103182 URL |
[4] |
SAARI J, STRÖMBERGSSON D, LUNDBERG J, et al. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM)[J]. Measurement, 2019, 137:287-301.
doi: 10.1016/j.measurement.2019.01.020 URL |
[5] | 陈玉昇, 杨燕华, 林萌, 等. 基于深度学习神经网络的核电厂故障诊断技术[J]. 上海交通大学学报, 2018, 52(Sup.1):58-61. |
CHEN Yusheng, YANG Yanhua, LIN Meng, et al. Fault diagnosis technology of nuclear power plant based on deep learning neural network[J]. Journal of Shanghai Jiao Tong University, 2018, 52(Sup.1):58-61. | |
[6] |
BEN ALI J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
doi: 10.1016/j.apacoust.2014.08.016 URL |
[7] |
LI L, HUANG Y X, TAO J F, et al. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder[J]. Measurement, 2018, 130:279-289.
doi: 10.1016/j.measurement.2018.08.029 URL |
[8] | 汤宝平, 习建民, 李锋. 基于Elman神经网络的旋转机械故障诊断[J]. 计算机集成制造系统, 2010, 16(10):2148-2152. |
TANG Baoping, XI Jianmin, LI Feng. Fault diagnosis for rotating machinery based on Elman neural network[J]. Computer Integrated Manufacturing Systems, 2010, 16(10):2148-2152. | |
[9] |
SHI X H, LIANG Y C, LEE H P, et al. Improved Elman networks and applications for controlling ultrasonic motors[J]. Applied Artificial Intelligence, 2004, 18(7):603-629.
doi: 10.1080/08839510490483279 URL |
[10] |
ZHENG K, YANG D W, ZHANG B, et al. A group sparse representation method in frequency domain with adaptive parameters optimization of detecting incipient rolling bearing fault[J]. Journal of Sound and Vibration, 2019, 462:114931.
doi: 10.1016/j.jsv.2019.114931 URL |
[11] |
LEI Y G, QIAO Z J, XU X F, et al. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 94:148-164.
doi: 10.1016/j.ymssp.2017.02.041 URL |
[12] |
LI H, LIU T, WU X, et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction[J]. ISA Transactions, 2019, 88:170-185.
doi: 10.1016/j.isatra.2018.12.002 URL |
[13] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
doi: 10.1098/rspa.1998.0193 URL |
[14] |
WANG Z W, ZHANG Q H, XIONG J B, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(17):5581-5588.
doi: 10.1109/JSEN.2017.2726011 URL |
[15] |
AMIRAT Y, BENBOUZID M E H, WANG T, et al. EEMD-based notch filter for induction machine bearing faults detection[J]. Applied Acoustics, 2018, 133:202-209.
doi: 10.1016/j.apacoust.2017.12.030 URL |
[16] | 刘涛, 杜世昌, 黄德林, 等. 基于改进的集合经验模态方法振动信号分解[J]. 上海交通大学学报, 2016, 50(9):1452-1459. |
LIU Tao, DU Shichang, HUANG Delin, et al. Vibration signal decomposition based on an improved ensemble empirical mode decomposition method[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9):1452-1459. | |
[17] |
FU Q, JING B, HE P J, et al. Fault feature selection and diagnosis of rolling bearings based on EEMD and optimized Elman_AdaBoost algorithm[J]. IEEE Sensors Journal, 2018, 18(12):5024-5034.
doi: 10.1109/JSEN.2018.2830109 URL |
[18] |
GUO H X, LI Y J, LI Y N, et al. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification[J]. Engineering Applications of Artificial Intelligence, 2016, 49:176-193.
doi: 10.1016/j.engappai.2015.09.011 URL |
[19] |
LIU H, TIAN H Q, LIANG X F, et al. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks[J]. Renewable Energy, 2015, 83:1066-1075.
doi: 10.1016/j.renene.2015.06.004 URL |
[1] | 闫青, 鲁建厦, 江伟光, 邵益平, 汤洪涛, 李英德. 考虑双端口布局的紧致化仓储系统堆垛机路径优化[J]. 上海交通大学学报, 2022, 56(7): 858-867. |
[2] | 周天颜, 冯小恩, 范云锋, 董诗音, 李玉庆, 金慧中. 避免防空火力过剩的地面兵力防御部署优化模型[J]. 空天防御, 2022, 5(4): 19-23. |
[3] | 王箫剑, 洪君, 陈晶华, 李鸿光. 基于参数化建模和响应面优化的箱体减重研究[J]. 空天防御, 2022, 5(4): 60-66. |
[4] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[5] | 陶海红, 闫莹菲. 一种基于GA-CNN的网络化雷达节点遴选算法[J]. 空天防御, 2022, 5(1): 1-5. |
[6] | 周宇泰, 徐岳, 李宇, 蒋国韬. 基于遗传算法的干扰态势下三维雷达网优化布站方法[J]. 空天防御, 2022, 5(1): 52-59. |
[7] | 李翠明, 王宁, 张晨. 基于改进遗传算法的光伏板清洁分级任务规划[J]. 上海交通大学学报, 2021, 55(9): 1169-1174. |
[8] | 顾一凡, 赵文龙, 唐善军, 杨擎宇, 郑鑫. 分布式主/被动成像探测系统目标空间协同定位方法研究[J]. 空天防御, 2021, 4(4): 119-126. |
[9] | 王金凤, 陈璐, 杨雯慧. 考虑设备可用性约束的单机调度问题[J]. 上海交通大学学报, 2021, 55(1): 103-110. |
[10] | 牛志华, 苑璨, 孔得宇. 计算周期序列k-错线性复杂度的混合遗传算法[J]. 上海交通大学学报, 2020, 54(6): 599-606. |
[11] | 康俊涛, 张亚州, 秦世强. 基于一种混合智能算法的有限元模型修正多解问题[J]. 上海交通大学学报, 2020, 54(6): 652-660. |
[12] | 戴少怀, 王磊, 李旻, 余科, 罗晨. 基于遗传算法的SVM自适应干扰样式选择[J]. 空天防御, 2020, 3(2): 59-64. |
[13] | 姚来鹏, 侯保林, 刘曦. 采用摩擦补偿的弹药传输机械臂自适应终端滑模控制[J]. 上海交通大学学报, 2020, 54(2): 144-151. |
[14] | 高云凯, 马超, 刘哲, 田林雳. 基于NSGA-III的白车身焊装生产平台的离散拓扑优化[J]. 上海交通大学学报, 2020, 54(12): 1324-1334. |
[15] | 施振兴, 管再升, 王磊, 施臣钢, 伍彬. 基于遗传算法的自动驾驶仪参数多目标优化研究[J]. 空天防御, 2020, 3(1): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||