上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (10): 1263-1271.doi: 10.16183/j.cnki.jsjtu.2020.216
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“机械工程”专题
陈浩, 王新杰, 王炅, 席占稳, 聂伟荣
收稿日期:
2020-07-13
出版日期:
2021-10-28
发布日期:
2021-11-01
通讯作者:
王新杰
E-mail:xjwang@njust.edu.cn
作者简介:
陈浩(1993-),男,江苏省泰州市人,博士生,现主要从事微光机电研究.
基金资助:
CHEN Hao, WANG Xinjie, WANG Jiong, XI Zhanwen, NIE Weirong
Received:
2020-07-13
Online:
2021-10-28
Published:
2021-11-01
Contact:
WANG Xinjie
E-mail:xjwang@njust.edu.cn
摘要:
为研究V型电热驱动器的动态响应特性,根据热传导理论和受迫振动方程分别建立驱动器电-热和热-力耦合模型,从而形成完整的一维V型电热驱动器多物理场耦合理论模型.采用正弦变换结合隐式差分法对电-热耦合模型求解并进行收敛性测试,正弦变换中,空间离散点数对温度求解结果的稳定性影响较小.电-热耦合模型在不同电压下,其瞬态和稳定温度分布与有限元仿真结果吻合得较好.通过实验和边缘检测算法获得驱动器在不同电压下的稳态位移,与热-力耦合模型的结果对比发现两者具有良好的一致性.基于该理论模型,分析驱动器在阶跃、正弦电压下的动态特性.研究结果表明:正弦电压幅值越大,V型电热驱动器中心处的温度与位移变化的幅度也就越大;当正弦电压作用时间大于5个周期,即50 ms后,驱动器中心处的温度与位移的平均值均等于驱动器在等效直流电压作用下的稳态温度和位移;在周期性电压加载下,驱动器会逐渐趋于周期性运动,其运动周期与电压周期相等.
中图分类号:
陈浩, 王新杰, 王炅, 席占稳, 聂伟荣. V型电热驱动器理论模型及动态特性[J]. 上海交通大学学报, 2021, 55(10): 1263-1271.
CHEN Hao, WANG Xinjie, WANG Jiong, XI Zhanwen, NIE Weirong. Theoretical Model and Dynamic Performance of V-Shaped Electrothermal Actuator[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1263-1271.
[1] |
HUSSEIN H, TAHHAN A, MOAL P L, et al. Dynamic electro-thermo-mechanical modelling of a U-shaped electro-thermal actuator[J]. Journal of Micromechanics and Microengineering, 2016, 26(2):025010.
doi: 10.1088/0960-1317/26/2/025010 URL |
[2] |
LEE C, WU C Y. Study of electrothermal V-beam actuators and latched mechanism for optical switch[J]. Journal of Micromechanics and Microengineering, 2004, 15(1):11-19.
doi: 10.1088/0960-1317/15/1/003 URL |
[3] |
PUSTAN M, CHIOREAN R, BIRLEANU C, et al. Reliability design of thermally actuated MEMS switches based on V-shape beams[J]. Microsystem Technologies, 2017, 23(9):3863-3871.
doi: 10.1007/s00542-015-2789-8 URL |
[4] |
ZHANG Z, YU Y Q, ZHANG X P. Theoretical modal analysis and parameter study of Z-shaped electrothermal microactuators[J]. Microsystem Technologies, 2018, 24(7):3149-3160.
doi: 10.1007/s00542-018-3709-5 URL |
[5] | 申跃跃. 应用于硅基MEMS安全系统的电热致动器研究[D]. 北京: 北京理工大学, 2015. |
SHEN Yueyue. The research of electrothermal actuator applied in MEMS safe and ARM system on silicon[D]. Beijing: Beijing Institute of Technology, 2015. | |
[6] |
ZHANG Z, YU Y Q, LIU X Y, et al. Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators[J]. Microsystem Technologies, 2017, 23(8):3775-3789.
doi: 10.1007/s00542-016-3180-0 URL |
[7] |
VAMEGH ESTAHBANATI S, DHAOUADI R, BAKRI-KASSEM M. Macromodeling of thermally driven V-shaped MEMS actuators[J]. Mechatronics, 2017, 46:193-204.
doi: 10.1016/j.mechatronics.2017.03.006 URL |
[8] | ZHANG Z, ZHANG W Z, WU Q Y, et al. A comprehensive analytical model and experimental validation of Z-shaped electrothermal microactuators[M]// BAI S P, CECCARELLI M. Recent advances in mechanism design for robotics. Heidelberg, Germany, 2015. |
[9] |
SHAN T Q, QI X L, CUI L, et al. Thermal behavior modeling and characteristics analysis of electrothermal microactuators[J]. Microsystem Technologies, 2017, 23(7):2629-2640.
doi: 10.1007/s00542-016-3070-5 URL |
[10] |
THANGAVEL A, RENGASWAMY R, SUKUMAR P K, et al. Modelling of Chevron electrothermal actuator and its performance analysis[J]. Microsystem Technologies, 2018, 24(4):1767-1774.
doi: 10.1007/s00542-018-3791-8 URL |
[11] |
KWAN A M H, SONG S C, LU X, et al. Improved designs for an electrothermal in-plane microactuator[J]. Journal of Microelectromechanical Systems, 2012, 21(3):586-595.
doi: 10.1109/JMEMS.2012.2185820 URL |
[12] |
CHU L L, QUE L, OLIVER A D, et al. Lifetime studies of electrothermal bent-beam actuators in single-crystal silicon and polysilicon[J]. Journal of Microelectromechanical Systems, 2006, 15(3):498-506.
doi: 10.1109/JMEMS.2006.876780 URL |
[13] |
VOICU R C. Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators[J]. Journal of Physics: Conference Series, 2016, 757:012015.
doi: 10.1088/1742-6596/757/1/012015 URL |
[14] | VOICU R C, TIBEICA C, MÜLLER R, et al. Design, simulation and testing of polymeric microgrippers with V-shaped electrothermal actuators and encapsulated heaters[C]// 2016 International Semiconductor Conference (CAS). Piscataway, NJ, USA: IEEE, 2016: 89-92. |
[15] |
HICKEY R, SAMEOTO D, HUBBARD T, et al. Time and frequency response of two-arm micromachined thermal actuators[J]. Journal of Micromechanics and Microengineering, 2003, 13(1):40-46.
doi: 10.1088/0960-1317/13/1/306 URL |
[16] | PRESS W H, WILLIAM H, TEUKOLSKY S A, et al. Numerical recipes: The art of scientific computing [M]. 3rd ed. Cambridge, UK: Cambridge University Press, 2007. |
[17] | 胡金迪, 肖炳甲, 罗正平, 等. 基于紧致差分的Grad-Shafranov方程快速解法[J]. 核聚变与等离子体物理, 2018, 38(1):8-14. |
HU Jindi, XIAO Bingjia, LUO Zhengping, et al. Fast direct solver for Grad-Shafranov equation based on compact scheme[J]. Nuclear Fusion and Plasma Physics, 2018, 38(1):8-14. | |
[18] |
CHEN H, WANG X J, WANG J, et al. Analysis of the dynamic behavior of a V-shaped electrothermal microactuator[J]. Journal of Micromechanics and Microengineering, 2020, 30(8):085005.
doi: 10.1088/1361-6439/ab90cc URL |
[19] | KOLAHDOOZAN M, ROUHANI ESFAHANI A, HASSANI M. Experimental and numerical investigation of the arms displacement in a new electrothermal MEMS actuator[J]. International Journal of Advanced Design and Manufacturing Technology, 2017, 10(2):71-81. |
[20] | BOUHADDA I, MOHAND-OUSAID A, LE MOAL P, et al. Dynamic characterization of an electrothermal actuator devoted to discrete MEMS positioning[C]// 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). Bordeaux, France: IEEE, 2017: 1-4. |
[21] | 袁春兰, 熊宗龙, 周雪花, 等. 基于Sobel算子的图像边缘检测研究[J]. 激光与红外, 2009, 39(1):85-87. |
YUAN Chunlan, XIONG Zonglong, ZHOU Xuehua, et al. Study of infrared image edge detection based on Sobel operator[J]. Laser & Infrared, 2009, 39(1):85-87. |
[1] | 闯振菊, 李春郑, 刘社文. 风机叶片结冰对其一体化结构动态响应影响的数值分析[J]. 上海交通大学学报, 2022, 56(9): 1176-1187. |
[2] | 牛振宇, 刘林芽, 秦佳良, 左志远. 减振垫层温频变动力性能对无砟轨道振动特性影响[J]. 上海交通大学学报, 2022, 56(9): 1238-1246. |
[3] | 吴灌伦, 施光林. 双并联机构耦合连续体机械臂的设计与实现[J]. 上海交通大学学报, 2022, 56(6): 809-817. |
[4] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[5] | 吴王浩, 段旭, 张鑫, 陈丹, 徐振东. 高马赫数钝头体气动/传热一体化计算方法研究[J]. 空天防御, 2022, 5(3): 87-92. |
[6] | 卢武, 丁苒苒, 赵文彬, 黄冬, 王哲铭. 外源性脉冲电磁场干扰下的心脏起搏器“窗口效应”及防护[J]. 上海交通大学学报, 2022, 56(11): 1518-1531. |
[7] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
[8] | 何金辉, 李明广, 陈锦剑, 夏小和. 考虑动态流体网格的颗粒-流体耦合算法[J]. 上海交通大学学报, 2021, 55(6): 645-651. |
[9] | 鄢雄伟, 杜波, 李绍隆, 张璐华, 李克勇. 推力变化对旋转导弹动稳定性的影响分析[J]. 空天防御, 2021, 4(4): 57-60. |
[10] | 张宇, 王晓亮. 基于显式动力学的软式飞艇流固耦合计算框架[J]. 上海交通大学学报, 2021, 55(3): 311-319. |
[11] | 田新亮. “软尾减阻”述评[J]. 上海交通大学学报, 2021, 55(2): 213-214. |
[12] | 蔡文涛, 王春江, 滕念管, 文泉. 超高速磁浮轨道梁体系的跨平台耦合振动分析[J]. 上海交通大学学报, 2021, 55(10): 1228-1236. |
[13] | 阳杰, 何炎平, 孟龙, 赵永生, 吴浩宇. 极限海况下6 MW单柱型浮式风力机耦合动力响应[J]. 上海交通大学学报, 2021, 55(1): 21-31. |
[14] | 张雅琼, 于丰宁, 塔娜, 饶柱石. 仿生时延放大系统的设计及特性分析[J]. 上海交通大学学报, 2020, 54(6): 562-568. |
[15] | 范兴明,贾二炬,高琳琳,张伟杰,焦自权,张鑫. 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020, 54(4): 430-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||