上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (8): 907-915.doi: 10.16183/j.cnki.jsjtu.2020.234
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
• • 下一篇
收稿日期:
2020-07-27
出版日期:
2021-08-28
发布日期:
2021-08-31
通讯作者:
孙仁
E-mail:drrsun@sjtu.edu.cn
作者简介:
李 昂(1990-),男,河北省沧州市人,博士生,现主要从事流体力学研究
基金资助:
Received:
2020-07-27
Online:
2021-08-28
Published:
2021-08-31
Contact:
SUN Ren
E-mail:drrsun@sjtu.edu.cn
摘要:
为了减小立管受到的振动损伤,本文对无列板立管以及三螺旋对称分布列板立管的水动力参数进行了实验评估.自然环境中的波浪与来流被抽象为振荡流与均匀流叠加,实验工况分为静止流场和相对运动流场.同时,立管受迫振动方向分别为流场纵向、横向以及纵向45° 夹角.结合Morison公式,由实验数据计算得到立管的附加质量系数Cm和托曳力系数Cd.实验结果表明,带螺旋列板立管的Cm与Keulegan-Carpenter(KC)数无关,Cm与受迫振动方向无关;Cd与流场速度和振动最大速度间的比率以及KC数的1/3次幂成反比关系.该发现与经典理论振荡流中平板结构Morison参数的形式相吻合,使经典理论在立管设计中获得新的验证与应用.在相同条件下,带螺旋列板立管的Cd值平均高出光滑立管273%.该发现表明在复杂工况下,螺旋列板能有效降低振动造成的影响.该结果可为海洋结构物的消振设计提供新的思路, 在海洋工程领域具有较高的应用价值.
中图分类号:
李昂, 孙仁. 螺旋列板立管受迫振动时的水动力学研究[J]. 上海交通大学学报, 2021, 55(8): 907-915.
LI Ang, SUN Ren. Hydrodynamics Study of Riser with Helical Strakes Oscillating in Flow[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 907-915.
表1
实验工况参数
KC | v∞/v0 | ||||||||
---|---|---|---|---|---|---|---|---|---|
工况1 | 工况2 | 工况3 | 工况4 | 工况5 | 工况6 | 工况7 | 工况8 | 工况9 | |
0.5 | 0.00 | N/A | N/A | N/A | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
1 | 0.00 | N/A | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
2 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
3 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
4 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
5 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
7 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
10 | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 3.00 | 5.00 |
[1] |
WANG J S, FAN D X, LIN K. A review on flow-induced vibration of offshore circular cylinders[J]. Journal of Hydrodynamics, 2020, 32(3):415-440.
doi: 10.1007/s42241-020-0032-2 URL |
[2] | 巫志文, 陆启贤, 梅国雄. 随机波浪和涡流联合作用下海洋立管多频参数激励振动响应[J]. 船舶力学, 2020, 24(5):599-610. |
WU Zhiwen, LU Qixian, MEI Guoxiong. Multi-frequency parametrically excited vibrations of marine riser under simultaneous random waves and vortex[J]. Journal of Ship Mechanics, 2020, 24(5):599-610. | |
[3] | 丁继超, 何立东, 冀沛尧. 半主动调谐质量阻尼器控制管道振动实验研究[J]. 噪声与振动控制, 2019, 39(3):215-220. |
DING Jichao, HE Lidong, JI Peiyao. Experiment study on semi-active pipeline vibration control with tuning mass dampers[J]. Noise and Vibration Control, 2019, 39(3):215-220. | |
[4] | VANDIVER J K, SWITHENBANK S, JAISWAL V, et al. The effectiveness of helical strakes in the suppression of high-mode-number VIV[C]//Offshore Technology Conference. Houston, Texas, USA: OTC, 2006: 1-9. |
[5] |
SUI J, WANG J S, LIANG S P, et al. VIV suppression for a large mass-damping cylinder attached with helical strakes[J]. Journal of Fluids and Structures, 2016, 62:125-146.
doi: 10.1016/j.jfluidstructs.2016.01.005 URL |
[6] | 沙勇, 曹静, 张恩勇, 等. 抑制涡激振动的螺旋列板设计参数研究[J]. 海洋工程, 2013, 31(1):43-48. |
SHA Yong, CAO Jing, ZHANG Enyong, et al. Helical strakes for marine risers VIV suppression and its design parameters selection[J]. The Ocean Engineering, 2013, 31(1):43-48.
doi: 10.1016/S0029-8018(03)00107-0 URL |
|
[7] | 李艳潇, 张淑君. 串列双立管螺旋列板抑制涡激振动的数值模拟[J]. 舰船科学技术, 2019, 41(7):100-105. |
LI Yanxiao, ZHANG Shujun. Three dimensional numerical simulation of VIV of tandem double risers by helical strakes[J]. Ship Science and Technology, 2019, 41(7):100-105. | |
[8] |
QUEN L K, ABU A, KATO N, et al. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser[J]. Applied Ocean Research, 2014, 44:82-91.
doi: 10.1016/j.apor.2013.11.006 URL |
[9] |
GAO Y, FU S X, REN T, et al. VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents[J]. Applied Ocean Research, 2015, 52:102-114.
doi: 10.1016/j.apor.2015.05.006 URL |
[10] | 高云, 付世晓, 宋磊建. 柔性立管涡激振动抑制装置试验研究[J]. 振动与冲击, 2014, 33(14):77-83. |
GAO Yun, FU Shixiao, SONG Leijian. Experimental investigation on the suppression device of VIV of a flexible riser[J]. Journal of Vibration and Shock, 2014, 33(14):77-83. | |
[11] | LAMBRAKOS K F, TRIANAFYLIOU M S, MOROS T. Hydrodynamic coefficients for risers with strakes[C]//Proceedings of ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway: Ocean, Offshore, and Arctic Engineering Division, 2009: 467-471. |
[12] | FAN D, JODIN G, CONSI T R, et al. A robotic Intelligent Towing Tank for learning complex fluid-structure dynamics[J]. Science Robotics, 2019, 4(36):5063. |
[13] |
XU Y W, FU S X, CHEN Y, et al. Experimental investigation on vortex induced forces of oscillating cylinder at high Reynolds number[J]. Ocean Systems Engineering, 2013, 3(3):167-180.
doi: 10.12989/ose.2013.3.3.167 URL |
[14] | 陈蓥, 付世晓, 许玉旺, 等. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究[J]. 物理学报, 2013, 62(6):329-338. |
CHEN Ying, FU Shixiao, XU Yuwang, et al. Hydrodynamic characters of a near-wall circular cylinder oscillating in cross flow direction in steady current[J]. Acta Physica Sinica, 2013, 62(6):329-338. | |
[15] |
LIN K, FAN D X, WANG J S. Dynamic response and hydrodynamic coefficients of a cylinder oscillating in crossflow with an upstream wake interference[J]. Ocean Engineering, 2020, 209:107520.
doi: 10.1016/j.oceaneng.2020.107520 URL |
[16] | WU B H, LE GARREC J, FAN D X, et al. Kill line model cross flow inline coupled vortex-induced vibration[C]//Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway: ASME, 2017: 61191. |
[17] | LE GARREC J, FAN D X, WU B H, et al. Experimental investigation of cross flow-inline coupled Vortex-Induced Vibration on riser with finite length buoyancy module[C]//OCEANS 2016 MTS/IEEE Monterey. Piscataway, NJ, USA: IEEE, 2016: 1-7. |
[18] |
FAN D X, WANG Z C, TRIANTAFYLLOU M S, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow[J]. Journal of Fluid Mechanics, 2019, 881:815-858.
doi: 10.1017/jfm.2019.738 URL |
[19] | FAN D X, TRIANTAFYLLOU M S. Vortex induced vibration of riser with low span to diameter ratio buoyancy modules[C]//The 27th International Ocean and Polar Engineering Conference. San Francisco, California, USA: International Society of Offshore and Polar Engineers, 2017: 1151-1159. |
[20] |
KEULEGAN G H, CARPENTER L H. Forces on cylinders and plates in an oscillating fluid[J]. Journal of Research of the National Bureau of Standards, 1958, 60(5):423.
doi: 10.6028/jres.060.043 URL |
[21] |
SARPKAYA T. Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1986, 165:61.
doi: 10.1017/S0022112086002999 URL |
[22] | FAN D X, ZHANG X T, TRIANTAFYLLOU M S. Drag coefficient enhancement of dual cylinders in oscillatory flow[C]//The 27th International Ocean and Polar Engineering Conference. San Francisco, California, USA: International Society of Offshore and Polar Engineers, 2017: 1198-1205. |
[23] |
WILLIAMSON C H K. Sinusoidal flow relative to circular cylinders[J]. Journal of Fluid Mechanics, 1985, 155:141-174.
doi: 10.1017/S0022112085001756 URL |
[24] | GOPALKRISHNAN R. Vortex-induced forces on oscillating bluff cylinders[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1993. |
[25] | ARONSEN K H. An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2007. |
[26] |
GRAHAM J M R. The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers[J]. Journal of Fluid Mechanics, 1980, 97(2):331-346.
doi: 10.1017/S0022112080002595 URL |
[27] | FALTINSEN O M. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1990: 238-240. |
[1] | 秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158. |
[2] | 刘庆升, 薛鸿祥, 袁昱超, 唐文勇. 含复合材料结构的非黏结柔性立管弯曲特性[J]. 上海交通大学学报, 2022, 56(9): 1247-1255. |
[3] | 王瑞, 胡志平, 殷珂, 马甲宽, 任翔. 黄土地区某铁路专用线路基动力响应规律[J]. 上海交通大学学报, 2022, 56(7): 908-918. |
[4] | 刘 浩 , 张 宁 , 王火平 , 朱礼云 , 张 宇 . 一种通过增加弯曲段惯性体 改善钢悬链线立管运动性能的方法[J]. 海洋工程装备与技术, 2022, 9(1): 37-45. |
[5] | 张晨雅, 寇雨丰, 吕海宁, 肖龙飞, 刘明月. 经典式Spar平台涡激运动与驰振特性的对比试验[J]. 上海交通大学学报, 2021, 55(5): 497-504. |
[6] | 李晓凯, 赵亦希, 于忠奇, 朱宝行, 崔峻辉. 铝合金带筋构件超声辅助旋压仿真研究[J]. 上海交通大学学报, 2021, 55(4): 394-402. |
[7] | 熊雪娇, 贾志海, 邓勇, 费媛媛. 微结构梯度能表面振动液滴的运动特性[J]. 上海交通大学学报, 2021, 55(4): 455-461. |
[8] | 蔡文涛, 王春江, 滕念管, 文泉. 超高速磁浮轨道梁体系的跨平台耦合振动分析[J]. 上海交通大学学报, 2021, 55(10): 1228-1236. |
[9] | 陈浩, 王新杰, 王炅, 席占稳, 聂伟荣. V型电热驱动器理论模型及动态特性[J]. 上海交通大学学报, 2021, 55(10): 1263-1271. |
[10] | 李云龙, 宋振华, 刘伟鹏, 张进, 冯辉. 动基座对准机翼挠曲变形补偿方法研究[J]. 空天防御, 2020, 3(3): 131-136. |
[11] | 张波涛,朱晔晨,梅勇,龚圣捷. 平直条带流致振动特性实验及其数值模拟研究[J]. 上海交通大学学报, 2020, 54(1): 100-105. |
[12] | 任晨辉,杨德庆. 余弦形预制双曲梁非线性隔振器的隔振性能[J]. 上海交通大学学报, 2019, 53(7): 852-859. |
[13] | 袁昱超,薛鸿祥,唐文勇. 计及平台垂荡的立管涡激振动模拟与试验验证[J]. 上海交通大学学报(自然版), 2019, 53(4): 480-487. |
[14] | 潘鹤斌, 宋波涛, 王皓. 基于优化法的飞行器复杂结构连接面刚度参数辨识[J]. 空天防御, 2019, 2(2): 1-4. |
[15] | 黄福祥, 李隶辉, 阴炳钢, 刘国锋, 陈金铭. FPSO舷侧立管碰撞损伤与风险研究[J]. 海洋工程装备与技术, 2019, 6(2): 487-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||