上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (7): 908-918.doi: 10.16183/j.cnki.jsjtu.2021.130
收稿日期:
2021-04-22
出版日期:
2022-07-28
发布日期:
2022-08-16
通讯作者:
胡志平
E-mail:huzhping@chd.edu.cn.
作者简介:
王瑞(1992-),男,河北省邯郸市人,讲师,现主要从事路基工程相关研究.
基金资助:
WANG Ruia, HU Zhipinga,b(), YIN Kea, MA Jiakuana, REN Xianga
Received:
2021-04-22
Online:
2022-07-28
Published:
2022-08-16
Contact:
HU Zhiping
E-mail:huzhping@chd.edu.cn.
摘要:
为了研究移动列车荷载下黄土地区某铁路专用线动力响应规律,结合现场测试数据及2.5D有限元计算结果评估了新建货运线路和临近既有线列车运行情况下路基动应力分布规律及影响深度,讨论了沿线办公区环境振动规律.结果表明,轨道系统的过度抽象会导致路基内部动应力幅值和影响范围偏大,道砟-枕木-紧固件系统的实体化建模使得路基内部动应力分布更为合理.路基处于拟静力状态时动力蠕变引发的能量消耗对路基动力响应的影响可以忽略.货运列车低速运行时,车速对路堤内部动应力分布影响微弱,动应力影响深度约为4.2 m.此外,车速越低,轨道不平顺对场地环境振动的影响越明显.改善轨道短波不平顺是控制环境振动的有效措施.
中图分类号:
王瑞, 胡志平, 殷珂, 马甲宽, 任翔. 黄土地区某铁路专用线路基动力响应规律[J]. 上海交通大学学报, 2022, 56(7): 908-918.
WANG Rui, HU Zhiping, YIN Ke, MA Jiakuan, REN Xiang. Dynamic Responses Law of Subgrade of a Special Railway Line in Loess Region[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 908-918.
表1
模型土体参数
土层 | 厚度/ m | 密度/ (kg·m-3) | 模量/ MPa | 阻尼比 | 泊松比 |
---|---|---|---|---|---|
基床表层(新建) | 0.7 | 1900 | 86.5 | 0.04 | 0.25 |
基床底层(新建) | 2.3 | 1850 | 75.0 | 0.04 | 0.25 |
路堤本体(新建) | 1.75 | 1750 | 50.0 | 0.04 | 0.25 |
场地填方体 | 7.0 | 1750 | 50.0 | 0.04 | 0.25 |
基床表层(既有) | 0.7 | 1900 | 86.5 | 0.04 | 0.25 |
基床底层(既有) | 2.3 | 1850 | 75.0 | 0.04 | 0.25 |
路堤本体(既有) | 4.7 | 1750 | 50.0 | 0.04 | 0.25 |
地基土层 | 10 | 1680 | 26.3 | 0.05 | 0.25 |
基岩 | 10.0 | 2000 | 126.0 | 0.02 | 0.32 |
[1] | 詹永祥, 蒋关鲁. 无碴轨道路基基床动力特性的研究[J]. 岩土力学, 2010, 31(2): 392-396. |
ZHAN Yongxiang, JIANG Guanlu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. Rock and Soil Mechanics, 2010, 31(2): 392-396. | |
[2] | 杨果林, 邱明明, 杨啸, 等. 高铁膨胀土新型路堑基床动力特性与参数敏感性[J]. 交通运输工程学报, 2016, 16(1): 63-72. |
YANG Guolin, QIU Mingming, YANG Xiao, et al. Dynamic characteristics and parameter sensitivities of new cutting subgrade for high-speed railway in expansive soil area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 63-72. | |
[3] | 张千里, 韩自力, 吕宾林. 高速铁路路基基床结构分析及设计方法[J]. 中国铁道科学, 2005, 26(6): 53-57. |
ZHANG Qianli, HAN Zili, LÜ Binlin. Structural analysis and design method for subgrade bed of high-speed railway[J]. China Railway Science, 2005, 26(6): 53-57. | |
[4] | 吕文强, 罗强, 刘钢, 等. 重载铁路路基基床结构分析及设计方法[J]. 铁道学报, 2016, 38(4): 74-81. |
LÜ Wenqiang, LUO Qiang, LIU Gang, et al. Structural analysis and design method for subgrade bed of heavy haul railway[J]. Journal of the China Railway Society, 2016, 38(4): 74-81. | |
[5] | 国家铁路局. 铁路路基设计规范: TB 10001—2016[S]. 北京: 中国铁道出版社, 2017. |
National Railway Administration of the People’s Republic of China. Code for design of railway earth structure: TB 10001—2016[S]. Beijing: China Railway Publishing House, 2017. | |
[6] |
ANYAKWO A, PISLARU C, BALL A. A new method for modelling and simulation of the dynamic behaviour of the wheel-rail contact[J]. International Journal of Automation and Computing, 2012, 9(3): 237-247.
doi: 10.1007/s11633-012-0640-6 URL |
[7] | 中国铁路总公司. 铁路路基极限状态法设计暂行规范: Q/CR 9127—2015[S]. 北京: 中国铁道出版社, 2015. |
China Railway Corporation. Interim code for limit state design of railway earth structure: Q/CR 9127—2015[S]. Beijing: China Railway Publishing House, 2015. | |
[8] | 孟庆成, 何翰林, 张梦宇, 等. 高架候车厅车致振动特性及减振控制研究[J]. 噪声与振动控制, 2021, 41(1): 177-183. |
MENG Qingcheng, HE Hanlin, ZHANG Mengyu, et al. Research of vibration characteristics and vibration control of elevated waiting halls[J]. Noise and Vibration Control, 2021, 41(1): 177-183. | |
[9] |
YANG Y B, GE P B, LI Q M, et al. 2.5D vibration of railway-side buildings mitigated by open or infilled trenches considering rail irregularity[J]. Soil Dynamics and Earthquake Engineering, 2018, 106: 204-214.
doi: 10.1016/j.soildyn.2017.12.027 URL |
[10] |
THOMPSON D J, JIANG J, TOWARD M G R, et al. Mitigation of railway-induced vibration by using subgrade stiffening[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 89-103.
doi: 10.1016/j.soildyn.2015.09.005 URL |
[11] |
COULIER P, CUÉLLAR V, DEGRANDE G, et al. Experimental and numerical evaluation of the effectiveness of a stiff wave barrier in the soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 238-253.
doi: 10.1016/j.soildyn.2015.04.007 URL |
[12] |
DIJCKMANS A, EKBLAD A, SMEKAL A, et al. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration[J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 55-69.
doi: 10.1016/j.soildyn.2016.02.001 URL |
[13] |
YARMOHAMMADI F, RAFIEE-DEHKHARGHANI R, BEHNIA C, et al. Design of wave barriers for mitigation of train-induced vibrations using a coupled genetic-algorithm/finite-element methodology[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 262-275.
doi: 10.1016/j.soildyn.2019.03.007 URL |
[14] | 马骙骙, 李斌, 王东. 高速铁路路堑段地面振动试验研究及数值分析[J]. 铁道标准设计, 2019, 63(10): 61-66. |
MA Kuikui, LI Bin, WANG Dong. Experimental study and numerical analysis of ground vibration in cutting section of high-speed railway[J]. Railway Standard Design, 2019, 63(10): 61-66. | |
[15] |
YANG Y B, HUNG H H. A 2.5D finite/infinite element approach for modelling visco-elastic bodies subjected to moving loads[J]. International Journal for Numerical Methods in Engineering, 2001, 51(11): 1317-1336.
doi: 10.1002/nme.208 URL |
[16] |
TAKEMIYA H. Simulation of track-ground vibrations due to a high-speed train: The case of X-2000 at Ledsgard[J]. Journal of Sound and Vibration, 2003, 261(3): 503-526.
doi: 10.1016/S0022-460X(02)01007-6 URL |
[17] |
COSTA P A, COLAÇO A, CALÇADA R, et al. Critical speed of railway tracks. Detailed and simplified approaches[J]. Transportation Geotechnics, 2015, 2: 30-46.
doi: 10.1016/j.trgeo.2014.09.003 URL |
[18] |
GAO G Y, YAO S F, YANG J, et al. Investigating ground vibration induced by moving train loads on unsaturated ground using 2.5D FEM[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 72-85.
doi: 10.1016/j.soildyn.2019.05.034 URL |
[19] |
BIAN X C, HU J, THOMPSON D, et al. Pore pressure generation in a poro-elastic soil under moving train loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105711.
doi: 10.1016/j.soildyn.2019.105711 URL |
[20] | 边学成, 陈云敏, 胡婷. 基于2.5维有限元方法模拟高速列车产生的地基振动[J]. 中国科学 (G辑: 物理学力学天文学), 2008, 38(5): 600-617. |
BIAN Xuecheng, CHEN Yunmin, HU Ting. Numerical simulation of high-speed train induced ground vibrations using 2.5D finite element approach[J]. Science in China (Series G: Physics, Mechanics & Astronomy), 2008, 38(5): 600-617. | |
[21] | 王瑞, 胡志平, 任翔, 等. 2.5D有限元建模关键问题: 边界条件、网格划分及计算域选取[J]. 振动工程学报, 2021, 34(1): 80-88. |
WANG Rui, HU Zhiping, REN Xiang, et al. Key issues in modeling process of 2.5D finite element method—Boundary conditions, meshing and computing range selection[J]. Journal of Vibration Engineering, 2021, 34(1): 80-88. | |
[22] | 王瑞, 王雷, 胡志平, 等. 交通荷载引起的静偏应力对压实黄土动力特性的影响[J]. 铁道学报, 2019, 41(7): 110-117. |
WANG Rui, WANG Lei, HU Zhiping, et al. Study on dynamic characteristics of compacted loess subjected to static deviatoric stress induced by traffic loading[J]. Journal of the China Railway Society, 2019, 41(7): 110-117. | |
[23] |
MA X N, ZHANG Z, ZHANG P Y, et al. Long-term dynamic stability of improved loess subgrade for high-speed railways[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2020, 173(3): 217-227.
doi: 10.1680/jgeen.19.00088 URL |
[24] | 高广运, 何俊锋, 杨成斌, 等. 2.5维有限元分析饱和地基列车运行引起的地面振动[J]. 岩土工程学报, 2011, 33(2): 234-241. |
GAO Guangyun, HE Junfeng, YANG Chengbin, et al. Ground vibration induced by trains moving on saturated ground using 2.5D FEM[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 234-241. | |
[25] |
CHENG G, FENG Q S, SHENG X Z, et al. Using the 2.5D FE and transfer matrix methods to study ground vibration generated by two identical trains passing each other[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 495-504.
doi: 10.1016/j.soildyn.2018.06.025 URL |
[26] |
YU Z L, CONNOLLY D P, WOODWARD P K, et al. Railway ballast anisotropy testing via true triaxial apparatus[J]. Transportation Geotechnics, 2020, 23: 100355.
doi: 10.1016/j.trgeo.2020.100355 URL |
[27] | 中华人民共和国住房和城乡建设部. 城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准: JGJ/T 170—2009[S]. 北京: 中国建筑工业出版社, 2009. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for limit and measuring method of building vibration and secondary noise caused by urban rail transit: JGJ/T 170—2009[S]. Beijing: China Architecture & Building Press, 2009. | |
[28] | 王瑞. 列车荷载下回填黄土铁路路堤的动力响应及其长期强度与沉降研究[D]. 西安: 长安大学, 2019. |
WANG Rui. The dynamic response and long-term strength and settlement of loess railway embankment subsjucted to train load[D]. Xi’an: Changan University, 2019. |
[1] | 刘翔, 白海梅, 陈晓晨, 陈锦剑, 王建华. 软土中大直径顶管管道受力特性测试[J]. 上海交通大学学报, 2014, 48(11): 1503-1509. |
[2] | 王一鸣,张孟喜,邱成春,李林. 交通荷载下H-V加筋路堤加筋效果的数值分析[J]. 上海交通大学学报(自然版), 2013, 47(09): 1459-1463. |
[3] | 李小伟1, 张建武1, 鲁统利1, 薛林2 . 基于耦合模型的轨道特种车辆悬架参数优化[J]. 上海交通大学学报(自然版), 2012, 46(03): 346-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||