上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (6): 663-671.doi: 10.16183/j.cnki.jsjtu.2020.149
所属专题: 《上海交通大学学报》2021年“土木建筑工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
王宁1,2, 丁海滨1,2(), 童立红1,2, 蒋亚龙1,2
收稿日期:
2020-05-22
出版日期:
2021-06-28
发布日期:
2021-06-30
通讯作者:
丁海滨
E-mail:hbding@ecjtu.edu.cn
作者简介:
王宁(1983-),男,山东省东营市人,讲师,主要从事基础动力学与土动力学及动力检测技术应用等研究
基金资助:
WANG Ning1,2, DING Haibin1,2(), TONG Lihong1,2, JIANG Yalong1,2
Received:
2020-05-22
Online:
2021-06-28
Published:
2021-06-30
Contact:
DING Haibin
E-mail:hbding@ecjtu.edu.cn
摘要:
为探究孔隙尺寸效应对饱和土地基动力响应的影响,基于非局部-Biot理论,构建了P波及SV波作用下饱和土地基表面动力响应的计算模型.采用波函数展开法,求解了地表位移及应力的解析解.分析了孔隙尺寸(以非局部参数描述)、入射波频率及入射角对地表位移及应力响应的影响.结果表明:低频下,非局部Biot理论计算结果与经典Biot理论计算结果基本一致;高频时,地表位移及应力随非局部参数变化较为明显,即高频率下,孔隙尺寸效应对地表响应影响不可忽略.入射波频率对地表响应的影响与孔隙尺寸有关,孔隙越大,频率影响越为显著.相同幅值的P波及SV波作用下,SV波引起的地表动力响应大于P波,且SV波在入射角为45° 时发生全反射.研究成果可为半空间饱和土中波动问题的研究提供借鉴.
中图分类号:
王宁, 丁海滨, 童立红, 蒋亚龙. 基于非局部Biot理论的平面波作用下饱和地基动力响应[J]. 上海交通大学学报, 2021, 55(6): 663-671.
WANG Ning, DING Haibin, TONG Lihong, JIANG Yalong. Dynamic Responses of Saturated Soil Foundation Subjected to Plane Wave Based on Nonlocal-Biot Theory[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 663-671.
[1] | 张奎, 李伟华, 赵成刚. 平面波入射下深水地基场地动力响应分析[J]. 岩土工程学报, 2018, 40(6):1066-1074. |
ZHANG Kui, LI Weihua, ZHAO Chenggang. Dynamic responses of an underwater site subjected to plane P- or SV-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6):1066-1074. | |
[2] |
YANG J. Saturation effects on horizontal and vertical motions in a layered soil-bedrock system due to inclined SV waves[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(6):527-536.
doi: 10.1016/S0267-7261(01)00015-X URL |
[3] | LIN C H. Wave propagation in a poroelastic half-space saturated with inviscid fluid [D]. Los Angeles, America: University of Southern California, 2002. |
[4] |
BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4):1482-1498.
doi: 10.1063/1.1728759 URL |
[5] |
LOPATNIKOV S. Macroscopic Lagrangian formulation of poroelasticity with porosity dynamics[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(12):2801-2839.
doi: 10.1016/j.jmps.2004.05.005 URL |
[6] |
PAPARGYRI-BESKOU S, POLYZOS D, BESKOS D E. Wave propagation in 3-D poroelastic media including gradient effects[J]. Archive of Applied Mechanics, 2012, 82(10/11):1569-1584.
doi: 10.1007/s00419-012-0675-8 URL |
[7] |
PAPARGYRI-BESKOU S, TSINOPOULOS S V, BESKOS D E. Transient dynamic analysis of a fluid-saturated porous gradient elastic column[J]. Acta Mechanica, 2011, 222(3/4):351-362.
doi: 10.1007/s00707-011-0539-2 URL |
[8] |
SMYRLIS V D, PEGIOS I P, PAPARGYRI-BESKOU S. On wave propagation in gradient poroelasticity[J]. Soil Dynamics and Earthquake Engineering, 2016, 88:72-75.
doi: 10.1016/j.soildyn.2016.05.010 URL |
[9] | BOUZIDI Y, SCHMITT D R. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B8):1-14. |
[10] |
LEE K I, HUMPHREY V F, KIM B N, et al. Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3 to 1.0 MHz[J]. The Journal of the Acoustical Society of America, 2007, 121(5):2553-2558.
doi: 10.1121/1.2713690 URL |
[11] |
CHAKRABORTY A. Prediction of negative dispersion by a nonlocal poroelastic theory[J]. The Journal of the Acoustical Society of America, 2008, 123(1):56-67.
doi: 10.1121/1.2816576 URL |
[12] |
ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9):4703-4710.
doi: 10.1063/1.332803 URL |
[13] |
TONG L H, YU Y, HU W T, et al. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory[J]. Journal of Sound and Vibration, 2016, 379:106-118.
doi: 10.1016/j.jsv.2016.05.042 URL |
[14] | 徐长节, 丁海滨, 童立红, 等. 基于非局部Biot理论下饱和土中深埋圆柱形衬砌对平面弹性波的散射[J]. 岩土工程学报, 2018, 40(9):1563-1570. |
XU Changjie, DING Haibin, TONG Lihong, et al. Scattering wave generated by the cylindrical lining in saturated soil based on the nonlocal-Biot theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(09):1563-1570. | |
[15] |
XU C J, DING H B, TONG L H, et al. Scattering of a plane wave by shallow buried cylindrical lining in a poroelastic half-space[J]. Applied Mathematical Modelling, 2019, 70:171-189.
doi: 10.1016/j.apm.2019.01.029 URL |
[16] |
DING H B, TONG L H, XU C J, et al. Dynamic responses of shallow buried composite cylindrical lining embedded in saturated soil under incident P wave based on nonlocal-Biot theory[J]. Soil Dynamics and Earthquake Engineering, 2019, 121:40-56.
doi: 10.1016/j.soildyn.2019.02.018 URL |
[17] |
TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J]. International Journal of Mechanical Sciences, 2018, 148:459-466.
doi: 10.1016/j.ijmecsci.2018.08.028 URL |
[18] |
BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2):179-191.
doi: 10.1121/1.1908241 URL |
[19] |
KNOPOFF L, FREDRICKS R W, GANGI A F, et al. Surface amplitudes of reflected body waves[J]. Geophysics, 1957, 22(4):842-847.
doi: 10.1190/1.1438425 URL |
[1] | 陈盼, 向锐, 魏小棋, 韦昌富, 王吉利. 考虑土水吸附效应的黏土收缩曲线方程[J]. 上海交通大学学报, 2020, 54(8): 866-872. |
[2] | 王亚光,廖晨聪,张琪. 地下管线在地表爆炸荷载下的位移响应与参数分析[J]. 上海交通大学学报, 2020, 54(2): 193-199. |
[3] | 徐斌, 徐满清, 王建华. 饱和土体固结3D比例边界有限元法分析[J]. 上海交通大学学报, 2016, 50(01): 8-16. |
[4] | 程演, 张璐璐, 张磊, 王建华. 基于随机场的非饱和土固结分析[J]. 上海交通大学学报, 2014, 48(11): 1528-1535. |
[5] | 张校通, 郑东生, 夏小和, 王建华. 非均质饱和-非饱和土的变形特性[J]. 上海交通大学学报, 2012, 46(10): 1544-1547. |
[6] | 张正林, 高绍武, 王建华. 非轴对称荷载下考虑流体流速的饱和土稳态动力响应[J]. 上海交通大学学报, 2004, 38(06): 947-951. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||