上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1071-1079.doi: 10.16183/j.cnki.jsjtu.2020.065
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“化学化工”专题
张金柯1,2, 缪光武2, 金佳敏2, 陈银飞1(), 卢晗锋1, 宁文生1, 白占旗2, 刘武灿2
收稿日期:
2020-03-13
出版日期:
2021-09-28
发布日期:
2021-10-08
通讯作者:
陈银飞
E-mail:yfchen@zjut.edu.cn
作者简介:
张金柯(1983-),男,浙江省诸暨市人,高级工程师,主要从事氟化工分离纯化、含氟电子气体、高纯氟烃制备、化工过程模拟、吸附及精馏技术的开发及应用等研究
ZHANG Jinke1,2, MIAO Guangwu2, JIN Jiamin2, CHEN Yinfei1(), LU Hanfeng1, NING Wensheng1, BAI Zhanqi2, LIU Wucan2
Received:
2020-03-13
Online:
2021-09-28
Published:
2021-10-08
Contact:
CHEN Yinfei
E-mail:yfchen@zjut.edu.cn
摘要:
为了认识五氟一氯乙烷(R115)在NaX上的吸附动力学机理,以指导R115吸附脱除和催化转化等工业应用,分别利用准一级、准二级和内扩散模型研究R115浓度(指体积分数)和吸附剂粒径对R115吸附的影响.对比Thomas和Yan模型对穿透曲线的适用性,采用二水平三因子实验方法分析R115浓度、吸附剂质量和体积流速对吸附性能影响的显著性和相关性.研究结果显示,吸附过程主要受膜扩散控制;Yan和准一级吸附动力学模型对实验数据拟合度较高;吸附剂质量是最关键因素,显著影响穿透时间、饱和时间、吸附剂处理量和床层利用率;吸附剂质量和体积流速的交互作用对吸附剂处理量影响显著.
中图分类号:
张金柯, 缪光武, 金佳敏, 陈银飞, 卢晗锋, 宁文生, 白占旗, 刘武灿. R115/NaX的吸附动力学及其因素显著性分析[J]. 上海交通大学学报, 2021, 55(9): 1071-1079.
ZHANG Jinke, MIAO Guangwu, JIN Jiamin, CHEN Yinfei, LU Hanfeng, NING Wensheng, BAI Zhanqi, LIU Wucan. Analysis of Factors and Significances of Adsorption Kinetics R115/NaX System[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1071-1079.
表2
不同 d p 及 φ 0下的内扩散模型参数拟合
dp/mm | φ0×106 | 第一部分线性 | 第二部分线性 | |||||
---|---|---|---|---|---|---|---|---|
kid/(mg·g-1·h-1/2) | R2 | kid/(mg·g-1·h-1/2) | I/(mg·g-1) | R2 | ||||
0.39 | 200 | 4.21 | 0.998 | 1.05 | 7.36 | 0.882 | ||
0.55 | 200 | 4.45 | 0.998 | 1.09 | 8.87 | 0.900 | ||
0.55 | 600 | 13.47 | 0.996 | 3.19 | 24.28 | 0.938 | ||
0.78 | 200 | 4.71 | 0.997 | 1.30 | 8.50 | 0.920 | ||
0.78 | 600 | 13.37 | 0.993 | 2.49 | 26.93 | 0.938 | ||
1.10 | 200 | 4.71 | 0.998 | 1.38 | 9.00 | 0.917 |
表3
R115在NaX上吸附的准一级和准二级动力学参数
dp/mm | φ0 ×106 | 准一级模型 | 准二级模型 | |||||
---|---|---|---|---|---|---|---|---|
k1/h-1 | R2 | k2×103/(g·mg-1·h-1) | R2 | h/(mg·g-1·h-1) | ||||
0.39 | 200 | 0.157 | 0.957 | 2.954 | 0.927 | 1.46 | ||
0.55 | 200 | 0.144 | 0.981 | 1.893 | 0.939 | 1.47 | ||
0.55 | 600 | 0.215 | 0.957 | 2.873 | 0.882 | 4.15 | ||
0.78 | 200 | 0.151 | 0.981 | 2.288 | 0.935 | 1.47 | ||
0.78 | 600 | 0.179 | 0.894 | 3.166 | 0.918 | 4.52 | ||
1.10 | 200 | 0.131 | 0.984 | 2.020 | 0.951 | 1.51 |
表4
R115在NaX上吸附的Thomas模型和Yan模型参数
φ0×106 | dp/mm | qe/(mg·g-1) | Thomas 模型 | Yan模型 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
kTH/(mL·min-1·mg-1) | qTH/(mg·g-1) | R2 | qY/(mg·g-1) | aY | R2 | |||||
200 | 0.39 | 12.159 | 4.52 | 14.02 | 0.993 | 13.29 | 3.57 | 0.995 | ||
0.55 | 14.358 | 3.69 | 16.46 | 0.992 | 15.56 | 3.41 | 0.995 | |||
0.78 | 15.725 | 3.33 | 17.96 | 0.993 | 16.96 | 3.38 | 0.995 | |||
1.10 | 16.624 | 2.96 | 18.87 | 0.990 | 17.65 | 3.15 | 0.995 | |||
600 | 0.55 | 38.038 | 1.79 | 44.50 | 0.997 | 43.07 | 4.47 | 0.995 | ||
0.78 | 37.821 | 1.79 | 44.26 | 0.996 | 42.82 | 4.47 | 0.994 |
表5
二水平三因子矩阵设计实验结果与预测值
φ0 ×106 | m/g | Q/(mL·min-1) | tb/h | ts/h | Vs/(L·g-1) | ζ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实验值 | 预测值 | 实验值 | 预测值 | 实验值 | 预测值 | 实验值 | 预测值 | |||||||
600 | 2 | 15 | 6.37 | 7.42 | 125.78 | 124.71 | 56.60 | 56.82 | 0.11540 | 0.11370 | ||||
400 | 2 | 15 | 5.22 | 4.18 | 124.68 | 125.75 | 56.11 | 55.89 | 0.09786 | 0.09957 | ||||
600 | 8 | 15 | 60.42 | 59.38 | 217.33 | 218.40 | 24.45 | 24.23 | 0.36670 | 0.36830 | ||||
400 | 8 | 15 | 51.18 | 52.23 | 242.13 | 241.06 | 27.24 | 27.47 | 0.32090 | 0.31920 | ||||
600 | 2 | 35 | 4.00 | 2.96 | 27.33 | 28.40 | 28.70 | 28.48 | 0.22100 | 0.22270 | ||||
400 | 2 | 35 | 2.85 | 3.90 | 26.67 | 25.60 | 28.00 | 28.23 | 0.21570 | 0.21390 | ||||
600 | 8 | 35 | 38.88 | 39.93 | 99.33 | 98.26 | 26.07 | 26.30 | 0.50860 | 0.50690 | ||||
400 | 8 | 35 | 38.00 | 37.00 | 116.00 | 117.07 | 30.45 | 30.23 | 0.46140 | 0.46310 | ||||
500 | 5 | 25 | 25.60 | 26.07 | 122.00 | 122.20 | 34.97 | 34.85 | 0.28716 | 0.24890 | ||||
500 | 5 | 25 | 25.71 | 25.81 | 122.19 | 122.24 | 34.65 | 34.74 | 0.28794 | 0.25430 | ||||
500 | 5 | 25 | 26.30 | 25.76 | 122.54 | 122.80 | 34.51 | 34.54 | 0.29022 | 0.25430 | ||||
平均值 | 25.87 | 25.88 | 122.41 | 122.41 | 34.70 | 34.71 | 0.28844 | 0.25250 | ||||||
R2 | 0.9978 | 0.9998 | 0.9997 | 0.9999 |
表6
因子回归系数及其对响应因子的影响
响应 因子 | 因子 | 系数 | 平方和 | P值 |
---|---|---|---|---|
tb | φ0 | 0.025 | 19.28 | 0.377 |
m | 8.578 | 3614.20 | 0.031 | |
Q | 0.653 | 194.64 | 0.132 | |
φ0×m | 3.258×10-3 | 7.64 | 0.521 | |
φ0×Q | -1.045×10-3 | 8.74 | 0.500 | |
m×Q | -0.125 | 112.35 | 0.173 | |
ts | φ0 | 0.016 | 197.11 | 0.135 |
m | 29.402 | 17143.04 | 0.014 | |
Q | -4.995 | 24264.94 | 0.012 | |
φ0×m | -0.018 | 233.60 | 0.124 | |
φ0×Q | 9.612×10-4 | 7.39 | 0.534 | |
m×Q | -0.199 | 284.05 | 0.113 | |
Vs | φ0 | 0.014 | 4.47 | 0.186 |
m | -7.146 | 468.18 | 0.018 | |
Q | -1.821 | 327.42 | 0.022 | |
φ0×m | -3.483×10-3 | 8.74 | 0.135 | |
φ0×Q | -1.725×10-4 | 0.24 | 0.583 | |
m×Q | 0.254 | 462.69 | 0.018 | |
ζ | φ0 | 3.230×10-5 | 1.677×10-3 | 0.074 |
m | 0.021 | 0.13 | 0.008 | |
Q | 5.756×10-3 | 0.032 | 0.017 | |
φ0×m | 2.915×10-5 | 6.118×10-4 | 0.122 | |
φ0×Q | -1.330×10-6 | 1.415×10-5 | 0.578 | |
m×Q | 2.465×10-4 | 4.375×10-4 | 0.144 |
[1] | LOVELOCK J E. Atmospheric fluorine compounds as indicators of air movements[J]. Nature, 1971, 230(5293):379. |
[2] | 张金柯, 白占旗, 徐娇, 等. 一种六氟丁二烯的纯化方法: CN107032949A[P]. 2017-08-11[2020-07-13]. |
ZHANG Jinke, BAI Zhanqi, XU Jiao, et al. Purification method of hexafluoro-1,3-butadiene: CN 107032949A[P]. 2017-08-11[2020-07-13]. | |
[3] |
MOON D J, CHUNG M J, PARK K Y, et al. Adsorption equilibrium and catalytic reaction of CFC-115 on Pd/activated carbon powder[J]. Carbon, 1999, 37(1):123-128.
doi: 10.1016/S0008-6223(98)00196-1 URL |
[4] |
KOBAYASHI S, MIZUNO K, KUSHIYAMA S, et al. Adsorption behavior of chlorofluorocarbons in zeolitic pores. 1. Adsorption isotherm[J]. Industrial & Engineering Chemistry Research, 1991, 30(10):2340-2344.
doi: 10.1021/ie00058a014 URL |
[5] |
SALEH T A, SARI A, TUZEN M. Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon[J]. Journal of Environmental Chemical Engineering, 2017, 5(1):1079-1088.
doi: 10.1016/j.jece.2017.01.032 URL |
[6] |
MOON D J, CHUNG M J, CHO S Y, et al. Adsorption equilibria of chloropentafluoroethane and pentafluoroethane on activated carbon pellet[J]. Journal of Chemical & Engineering Data, 1998, 43(5):861-864.
doi: 10.1021/je970282r URL |
[7] | YANG R T. Adsorbents: Fundamentals and applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, 2003. |
[8] |
PENG Y, ZHANG F M, ZHENG X, et al. Comparison study on the adsorption of CFC-115 and HFC-125 on activated carbon and silicalite-1[J]. Industrial & Engineering Chemistry Research, 2010, 49(20):10009-10015.
doi: 10.1021/ie1010806 URL |
[9] |
PARK H M, MOON D J. Adsorption equilibria of CFC-115 on activated charcoal[J]. Journal of Chemical & Engineering Data, 2003, 48(4):908-910.
doi: 10.1021/je025636f URL |
[10] | 张金柯, 金佳敏, 缪光武, 等. 六氟乙烷和五氟一氯乙烷在NaX上的吸附平衡[J]. 高校化学工程学报, 2020, 34(2):311-317. |
ZHANG Jinke, JIN Jiamin, MIAO Guangwu, et al. Adsorption equilibria of hexafluoroethane and chloropentafluoroethane on NaX[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2):311-317. | |
[11] | 张金柯, 白占旗, 齐海, 等. 一种改性的吸附剂及其在超高纯六氟乙烷制备中的应用: CN105327676A[P]. 2016-02-17[2020-07-13]. |
ZHANG Jinke, BAI Zhanqi, QI Hai, et al. Modified adsorbent and its application in preparation of ultra-pure hexafluoroethane: CN105327676A[P]. 2016-02-17[2020-07-13]. | |
[12] | HOLMER A E. Purification of hexafluoroethane: US6346138[P]. 2002-02-12[2020-07-13]. |
[13] |
YANG X Y, AL-DURI B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon[J]. Journal of Colloid and Interface Science, 2005, 287(1):25-34.
doi: 10.1016/j.jcis.2005.01.093 URL |
[14] |
SRIVASTAVA V C, SWAMY M M, MALL I D, et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272(1/2):89-104.
doi: 10.1016/j.colsurfa.2005.07.016 URL |
[15] |
OFOMAJA A E. Kinetics and mechanism of methylene blue sorption onto palm kernel fibre[J]. Process Biochemistry, 2007, 42(1):16-24.
doi: 10.1016/j.procbio.2006.07.005 URL |
[16] |
HAMEED B H, RAHMAN A A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material[J]. Journal of Hazardous Materials, 2008, 160(2/3):576-581.
doi: 10.1016/j.jhazmat.2008.03.028 URL |
[17] |
MAIA G S, DE ANDRADE J R, DA SILVA M G C, et al. Adsorption of diclofenac sodium onto commercial organoclay: Kinetic, equilibrium and thermodynamic study[J]. Powder Technology, 2019, 345:140-150.
doi: 10.1016/j.powtec.2018.12.097 URL |
[18] |
BOYD G E, ADAMSON A W, MYERS L S JR. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1[J]. Journal of the American Chemical Society, 1947, 69(11):2836-2848.
pmid: 20270838 |
[19] |
GARCIA-MATEOS F J, RUIZ-ROSAS R, MARQUES M D, et al. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments[J]. Chemical Engineering Journal, 2015, 279:18-30.
doi: 10.1016/j.cej.2015.04.144 URL |
[20] |
ALHAMED Y A. Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones[J]. Journal of Hazardous Materials, 2009, 170(2/3):763-770.
doi: 10.1016/j.jhazmat.2009.05.002 URL |
[21] |
DE FRANCO M A E, DE CARVALHO C B, BONETTO M M, et al. Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: Isotherms, thermodynamic study and breakthrough curves modeling[J]. Journal of Cleaner Production, 2018, 181:145-154.
doi: 10.1016/j.jclepro.2018.01.138 URL |
[22] |
AKSU Z, GÖNEN F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves[J]. Process Biochemistry, 2004, 39(5):599-613.
doi: 10.1016/S0032-9592(03)00132-8 URL |
[23] | DOUGLAS C M. Design and Analysis of Experiments[M]. 7th ed. New York, NY, USA: John Wiley & Sons, 2008. |
[24] |
MONDAL S, AIKAT K, HALDER G. Ranitidine hydrochloride sorption onto superheated steam activated biochar derived from mung bean husk in fixed bed column[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):488-497.
doi: 10.1016/j.jece.2015.12.005 URL |
[25] |
MENG M J, FENG Y H, ZHANG M, et al. Highly efficient adsorption of salicylic acid from aqueous solution by wollastonite-based imprinted adsorbent: A fixed-bed column study[J]. Chemical Engineering Journal, 2013, 225:331-339.
doi: 10.1016/j.cej.2013.03.080 URL |
[26] |
DE FRANCO M A E, DE CARVALHO C B, BONETTO M M, et al. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling[J]. Journal of Cleaner Production, 2017, 161:947-956.
doi: 10.1016/j.jclepro.2017.05.197 URL |
[27] |
CHEN S H, YUE Q Y, GAO B Y, et al. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study[J]. Bioresource Technology, 2012, 113:114-120.
doi: 10.1016/j.biortech.2011.11.110 URL |
[28] |
ÁLVAREZ-TORRELLAS S, RODRÍGUEZ A, OVEJERO G, et al. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials[J]. Chemical Engineering Journal, 2016, 283:936-947.
doi: 10.1016/j.cej.2015.08.023 URL |
[1] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[2] | 王沙沙, 张翔宇, 邱国志, 龚景海. 一种分析膜面在积水荷载作用下响应的数值模型[J]. 上海交通大学学报, 2022, 56(6): 730-738. |
[3] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[4] | 唐耿林, 李建军, 李元辉, 张珑耀, 朱文峰. 基于胶层填充的薄板包边成形数值模拟及实验研究[J]. 上海交通大学学报, 2022, 56(4): 523-531. |
[5] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
[6] | 王超, 杨波, 张媛, 郭春雨, 叶礼裕. 冰柱冲击问题的数值仿真分析[J]. 上海交通大学学报, 2022, 56(3): 368-378. |
[7] | 胡金硕, 黄健哲. 共轴双旋翼动力学建模与验证[J]. 上海交通大学学报, 2022, 56(3): 395-402. |
[8] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[9] | 王 屹. 单点吊装作业视景仿真应用研究[J]. 海洋工程装备与技术, 2022, 9(2): 38-42. |
[10] | 何清波,姜添曦. 人工智能可以通过操纵波来实现吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 1-2. |
[11] | 姚振威. 如何通过拓扑缺陷概念推进对凝聚态物质的理解?[J]. 上海交通大学学报, 2021, 55(Sup.1): 106-107. |
[12] | 张贤楠, 冷远逵, 武卫杰, 李万万. 聚乙二醇接枝苯乙烯马来酸共聚物复合微球的制备和检测应用[J]. 上海交通大学学报, 2021, 55(9): 1064-1070. |
[13] | 李昂, 孙仁. 螺旋列板立管受迫振动时的水动力学研究[J]. 上海交通大学学报, 2021, 55(8): 907-915. |
[14] | 滕亚军, 陈务军, 杨天洋, 敬忠良, 刘物己. SMA弹簧驱动的柔性操控臂动力学分析[J]. 上海交通大学学报, 2021, 55(8): 1018-1026. |
[15] | 张晨雅, 寇雨丰, 吕海宁, 肖龙飞, 刘明月. 经典式Spar平台涡激运动与驰振特性的对比试验[J]. 上海交通大学学报, 2021, 55(5): 497-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||