上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (7): 878-890.doi: 10.16183/j.cnki.jsjtu.2020.020
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
李岩松1,4, 丁鼎倩2, 韩东1, 刘静3, 梁永图1()
收稿日期:
2020-01-16
出版日期:
2021-07-28
发布日期:
2021-07-30
通讯作者:
梁永图
E-mail:liangyt21st@163.com
作者简介:
李岩松(1995-),男,陕西省榆林市人,博士生,研究方向为复杂流体流动与传热特性
基金资助:
LI Yansong1,4, DING Dingqian2, HAN Dong1, LIU Jing3, LIANG Yongtu1()
Received:
2020-01-16
Online:
2021-07-28
Published:
2021-07-30
Contact:
LIANG Yongtu
E-mail:liangyt21st@163.com
摘要:
水力清管可有效减缓管输油品质量指标的衰减,研究水力清除成品油管内积水所需的临界完全携积水油速具有十分重要的现实意义.首先,分析了完全携水油速下管内油携水的流动型态,发现临界完全携积水油速下,上倾管内油携水流动属于油水两相波状分层流.基于此,建立了双极坐标系下的油携水流动数值模型,并给出了数值求解算法.最后,将模型计算值与文献数据进行对比分析,验证了临界完全携积水油速数值模型的可靠性.对上倾管道内柴油携水流动过程进行了数值研究,详细分析了水力清管过程中油流和积水的流动特性.研究结果表明:水膜在油流携带过程中主要受重力压降的影响,摩阻压降相比于重力压降可忽略;当管内油速较小时,靠近相界面处的水相部分在油相的携带作用下向下游流动,而管壁附近的水相在重力作用下回流至管道底部;随着油相速度增大,水相速度最小值位置逐渐向管壁偏移,当其首次出现在管壁位置时对应的管内油相速度即为临界完全携积水油速.
中图分类号:
李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890.
LI Yansong, DING Dingqian, HAN Dong, LIU Jing, LIANG Yongtu. Numerical Simulation of Critical Oil Velocity Required to Completely Remove Water Lump Deposited in Hilly Oil Pipelines[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 878-890.
[1] |
NOVITSKY N N, ALEKSEEV A V, GREBNEVA O A, et al. Multilevel modeling and optimization of large-scale pipeline systems operation[J]. Energy, 2019, 184:151-164.
doi: 10.1016/j.energy.2018.02.070 URL |
[2] | 祝悫智, 吴超, 李秋扬, 等. 全球油气管道发展现状及未来趋势[J]. 油气储运, 2017, 36(4): 375-380. |
ZHU Quezhi, WU Chao, LI Qiuyang, et al. Development status and trend of global oil and gas pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(4): 375-380. | |
[3] |
POURARIA H, SEO J K, PAIK J K. A numerical study on water wetting associated with the internal corrosion of oil pipelines[J]. Ocean Engineering, 2016, 122:105-117.
doi: 10.1016/j.oceaneng.2016.06.022 URL |
[4] |
XIAO R J, XIAO G Q, HUANG B, et al. Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline[J]. Engineering Failure Analysis, 2016, 68:113-121.
doi: 10.1016/j.engfailanal.2016.05.029 URL |
[5] |
SONG X Q, YANG Y X, YU D L, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines[J]. Journal of Petroleum Science and Engineering, 2016, 146:803-812.
doi: 10.1016/j.petrol.2016.07.035 URL |
[6] | Energy Institute, Joint Inspection Group. EI/JIG Standard 1530 Quality assurance requirements for the manufacture, storage and distribution of aviation fuel to airports (A4) [DB/OL]. (2019-05-02)[2019-12-17]. https://publishing.energyinst.org/topics/aviation/aviation-fuel-handling/1530. |
[7] | 韩东, 刘静, 左志恒, 等. 西南某管道顺序输送航煤质量指标分析[J]. 油气田地面工程, 2019, 38(9): 69-75. |
HAN Dong, LIU Jing, ZUO Zhiheng, et al. Quality index analysis of the aviation kerosene sequential transportation in one southwestern pipeline[J]. Oil-Gas Field Surface Engineering, 2019, 38(9): 69-75. | |
[8] | 耿新中. 气井携液机理与临界参数研究[J]. 天然气工业, 2018, 38(1): 74-80. |
GENG Xinzhong. Mechanism and critical parameters of liquid-carrying behaviors in gas wells[J]. Natural Gas Industry, 2018, 38(1): 74-80. | |
[9] | 许振良, 蔡荣宦, 武日权, 等. 矿浆管道输送临界流速试验研究[J]. 洁净煤技术, 2018, 24(3): 139-143. |
XU Zhenliang, CAI Ronghuan, WU Riquan, et al. Experimental study on critical velocity of slurry pipeline transportation[J]. Clean Coal Technology, 2018, 24(3): 139-143. | |
[10] |
LIU Q L, TIAN S C, SHEN Z H, et al. A new equation for predicting settling velocity of solid spheres in fiber containing power-law fluids[J]. Powder Technology, 2018, 329:270-281.
doi: 10.1016/j.powtec.2018.01.076 URL |
[11] | 刘刚, 汤苑楠, 李博, 等. 成品油管道内杂质运移沉积及其影响规律[J]. 油气储运, 2017, 36(6): 708-715. |
LIU Gang, TANG Yuannan, LI Bo, et al. Movement, deposition and influence laws of impurities in the product oil pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 708-715. | |
[12] | 徐广丽, 张鑫, 蔡亮学, 等. 起伏管内局部油水两相流流动特性实验研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 85-90. |
XU Guangli, ZHANG Xin, CAI Liangxue, et al. Experimental investigation on the flow characteristics of the local oil-water two phases flow system in hilly-terrain tube[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 85-90. | |
[13] | 倪玲英, 张鲁飞, 杨思坤, 等. 机坪管道积水驱除数值模拟[J]. 油气储运, 2017, 36(10): 1139-1143. |
NI Lingying, ZHANG Lufei, YANG Sikun, et al. Numerical simulation on the expelling of water accumulated in apron pipelines[J]. Oil & Gas Storage and Transportation, 2017, 36(10): 1139-1143. | |
[14] |
MAGNINI M, ULLMANN A, BRAUNER N, et al. Numerical study of water displacement from the elbow of an inclined oil pipeline[J]. Journal of Petroleum Science and Engineering, 2018, 166:1000-1017.
doi: 10.1016/j.petrol.2018.03.067 URL |
[15] |
XU G L, CAI L X, ULLMANN A, et al. Experiments and simulation of water displacement from lower sections of oil pipelines[J]. Journal of Petroleum Science and Engineering, 2016, 147:829-842.
doi: 10.1016/j.petrol.2016.09.049 URL |
[16] |
XU G L, ZHANG G Z, LIU G, et al. Trapped water displacement from low sections of oil pipelines[J]. International Journal of Multiphase Flow, 2011, 37(1): 1-11.
doi: 10.1016/j.ijmultiphaseflow.2010.09.003 URL |
[17] |
SONG X Q, YANG Y X, ZHANG T, et al. Studies on water carrying of diesel oil in upward inclined pipes with different inclination angle[J]. Journal of Petroleum Science and Engineering, 2017, 157:780-792.
doi: 10.1016/j.petrol.2017.07.076 URL |
[18] |
HANAFIZADEH P, HOJATI A, KARIMI A. Experimental investigation of oil-water two phase flow regime in an inclined pipe[J]. Journal of Petroleum Science and Engineering, 2015, 136:12-22.
doi: 10.1016/j.petrol.2015.10.031 URL |
[19] | 徐广丽. 成品油管道油携水机理研究[D]. 青岛: 中国石油大学(华东), 2011. |
XU Guangli. Investigation on the mechanism of deposited water displaced by flowing oil in inclined products oil pipeline[D]. Qingdao: China University of Petroleum, 2011. | |
[20] | 隋冰, 李博, 赵家良, 等. 起伏管道中成品油携杂质的流动状态[J]. 油气储运, 2017, 36(5): 519-525. |
SUI Bing, LI Bo, ZHAO Jialiang, et al. Flow regimes of oil product carrying impurity in undulate pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(5): 519-525. | |
[21] |
ARGYROPOULOS C D, MARKATOS N C. Recent advances on the numerical modelling of turbulent flows[J]. Applied Mathematical Modelling, 2015, 39(2): 693-732.
doi: 10.1016/j.apm.2014.07.001 URL |
[22] |
CATELLANI C, CAZZOLI G, FALFARI S, et al. Large eddy simulation of a steady flow test bench using OpenFOAM[J]. Energy Procedia, 2016, 101:622-629.
doi: 10.1016/j.egypro.2016.11.079 URL |
[23] |
CHENG Z, HSU T J, CHAUCHAT J. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology[J]. Advances in Water Resources, 2018, 111:205-223.
doi: 10.1016/j.advwatres.2017.11.016 URL |
[24] |
ROTTA J C. Turbulent boundary layers in incompressible flow[J]. Progress in Aerospace Sciences, 1962, 2(1): 1-95.
doi: 10.1016/0376-0421(62)90014-3 URL |
[25] |
LI Y S, HE G X, SUN L Y, et al. Numerical simulation of oil-water non-Newtonian two-phase stratified wavy pipe flow coupled with heat transfer[J]. Applied Thermal Engineering, 2018, 140:266-286.
doi: 10.1016/j.applthermaleng.2018.05.048 URL |
[26] | DE GENNES P G, BROCHARD-WYART F, QUÉRÉ D. Surfactants[M]//Capillarity and Wetting Phenomena. New York, NY, USA: Springer, 2004: 191-213. |
[27] |
CHARLES M E, REDBERGER P J. The reduction of pressure gradients in oil pipelines by the addition of water: Numerical analysis of stratified flow[J]. The Canadian Journal of Chemical Engineering, 1962, 40(2): 70-75.
doi: 10.1002/cjce.v40.2 URL |
[28] |
DUAN J M, DENG S S, XU S, et al. The effect of gas flow rate on the wax deposition in oil-gas stratified pipe flow[J]. Journal of Petroleum Science and Engineering, 2018, 162:539-547.
doi: 10.1016/j.petrol.2017.10.058 URL |
[29] |
DUAN J M, LIU H S, WANG N, et al. Hydro dynamic modeling of stratified smooth two-phase turbulent flow with curved interface through circular pipe[J]. International Journal of Heat and Mass Transfer, 2015, 89:1034-1043.
doi: 10.1016/j.ijheatmasstransfer.2015.05.093 URL |
[30] |
HE G X, LI Y S, YIN B B, et al. Numerical simulation of vapor condensation in gas-water stratified wavy pipe flow with varying interface location[J]. International Journal of Heat and Mass Transfer, 2017, 115:635-651.
doi: 10.1016/j.ijheatmasstransfer.2017.08.069 URL |
[31] |
SUN D L, YU S, YU B, et al. A VOSET method combined with IDEAL algorithm for 3D two-phase flows with large density and viscosity ratio[J]. International Journal of Heat and Mass Transfer, 2017, 114:155-168.
doi: 10.1016/j.ijheatmasstransfer.2017.06.050 URL |
[32] |
LI J F, YU B, WANG L, et al. A mixed subgrid-scale model based on ICSM and TADM for LES of surfactant-induced drag-reduction in turbulent channel flow[J]. Applied Thermal Engineering, 2017, 115:1322-1329.
doi: 10.1016/j.applthermaleng.2016.11.112 URL |
[1] | 王志伟, 何炎平, 李铭志, 仇明, 黄超, 刘亚东. 基于计算流体力学的90° 弯管气液两相流数值模拟及流型演化[J]. 上海交通大学学报, 2022, 56(9): 1159-1167. |
[2] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[3] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[4] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[5] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[6] | 郭涛, 刘明明, 曹蕾, 胡京招, 洪国军, 尤云祥. 疏浚泵内泥沙颗粒的瞬态追踪数值方法[J]. 上海交通大学学报, 2022, 56(5): 656-663. |
[7] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[8] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[9] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[10] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[11] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
[12] | 徐德辉, 顾汉洋, 刘莉, 黄超. 新型锥形式旋叶汽水分离器热态试验与数值研究[J]. 上海交通大学学报, 2021, 55(9): 1087-1094. |
[13] | 刘勖诚, 谷波, 曾炜杰, 杜仲星, 田镇. 小通道内制冷剂两相流动摩擦压降关联式分析[J]. 上海交通大学学报, 2021, 55(9): 1095-1107. |
[14] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[15] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||