上海交通大学学报 ›› 2022, Vol. 56 ›› Issue (6): 801-808.doi: 10.16183/j.cnki.jsjtu.2021.051
段红燕a, 唐国鑫a(), 盛捷b, 曹孟杰a, 裴磊a, 田宏伟a
收稿日期:
2021-02-10
出版日期:
2022-06-28
发布日期:
2022-07-04
通讯作者:
唐国鑫
E-mail:tanggx9458@163.com
作者简介:
段红燕(1978-),女,河北省邯郸市人,副教授,从事疲劳与断裂研究.
基金资助:
DUAN Hongyana, TANG Guoxina(), SHENG Jieb, CAO Mengjiea, PEI Leia, TIAN Hongweia
Received:
2021-02-10
Online:
2022-06-28
Published:
2022-07-04
Contact:
TANG Guoxin
E-mail:tanggx9458@163.com
摘要:
疲劳破坏是工程应用构件失效的最主要原因之一.但由于疲劳实验成本过高,有必要用力学性能对疲劳强度进行预测.基于真实应力应变曲线,建立了一种新型的疲劳强度预测模型,并运用这种模型计算疲劳强度,与“升降法”和Basquin公式计算的疲劳强度作对比.结果表明:该模型仅需通过抗拉强度和加工硬化强度就可得到材料的疲劳强度,并且适用于其他钢种,极大地节约了成本,精确度也较高.
中图分类号:
段红燕, 唐国鑫, 盛捷, 曹孟杰, 裴磊, 田宏伟. 一种新型的疲劳强度预测模型[J]. 上海交通大学学报, 2022, 56(6): 801-808.
DUAN Hongyan, TANG Guoxin, SHENG Jie, CAO Mengjie, PEI Lei, TIAN Hongwei. A Novel Prediction Model for Fatigue Strength[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 801-808.
[1] | MURAKAMI Y. Metal fatigue: Effects of small defects and nonmetallic inclusions[M]. Kidlington, UK: Elsevier, 2002. |
[2] |
OSMOND P, LE V D, MOREL F, et al. Effect of porosity on the fatigue strength of cast aluminium alloys: From the specimen to the structure[J]. Procedia Engineering, 2018, 213: 630-643.
doi: 10.1016/j.proeng.2018.02.059 URL |
[3] | 张健. 非均匀层片结构低碳钢的力学行为研究[D]. 北京: 中国科学院大学, 2017. |
ZHANG Jian. Research on the mechanical behavior of low carbon steel with non-uniform layer structure[D]. Beijing: University of Chinese Academy of Sciences, 2017. | |
[4] | 丁明超, 张元良, 咸宏伟, 等. 基于微观划痕的疲劳强度预测[J]. 东北大学学报(自然科学版), 2020, 41(5): 693-699. |
DING Mingchao, ZHANG Yuanliang, XIAN Hongwei, et al. Fatigue strength prediction based on micro scratches[J]. Journal of Northeastern University (Natural Science), 2020, 41(5): 693-699. | |
[5] |
HAGIWARA M, KITAURA T, ONO Y, et al. Relationship among tensile strength, high cycle fatigue strength, and origin of fatigue crack initiation in a minor boron (B)-modified β-type Ti-6.8Mo-4.5Fe-1.5Al alloy[J]. Metallurgical and Materials Transactions A, 2021, 52(2): 806-816.
doi: 10.1007/s11661-020-06106-3 URL |
[6] | 刘平. 7B50铝合金板材疲劳极限强度及S-N曲线的测定[J]. 铝加工, 2017(3): 26-30. |
LIU Ping. Determination of fatigue ultimate strength and S-N curve for 7B50 aluminum alloy plate[J]. Aluminium Fabrication, 2017(3): 26-30. | |
[7] |
MÜLLER C, WÄCHTER M, MASENDORF R, et al. Accuracy of fatigue limits estimated by the staircase method using different evaluation techniques[J]. International Journal of Fatigue, 2017, 100: 296-307.
doi: 10.1016/j.ijfatigue.2017.03.030 URL |
[8] | GAZIZOV M, KAIBYSHEV R. High cyclic fatigue performance of Al-Cu-Mg-Ag alloy under T6 and T840 conditions[J]. Transactions of Nonferrous Me-tals Society of China, 2017, 27(6): 1215-1223. |
[9] | 崔友久, 惠卫军, 张永健, 等. 连铸与模铸高铁车轴钢的高周疲劳破坏行为[J]. 中国冶金, 2019, 29(12): 31-39. |
CUI Youjiu, HUI Weijun, ZHANG Yongjian, et al. Comparison of high-cycle fatigue properties of continuous casting and mould casting axle steels[J]. China Metallurgy, 2019, 29(12): 31-39. | |
[10] | 耿思远, 杨卯生, 赵昆渝. 温度对高钴钼不锈轴承钢高周疲劳性能的影响[J]. 钢铁, 2018, 53(12): 77-85. |
GENG Siyuan, YANG Maosheng, ZHAO Kunyu. Influence of temperature on high cycle fatigue properties of high cobalt molybdenum stainless bearing steel[J]. Iron and Steel, 2018, 53(12): 77-85. | |
[11] | 高彩茹, 朱长友, 张大伟, 等. 车轮轮辐钢S500LF的疲劳性能[J]. 东北大学学报(自然科学版), 2020, 41(8): 1148-1152. |
GAO Cairu, ZHU Changyou, ZHANG Dawei, et al. Fatigue property of spoke steel S500LF[J]. Journal of Northeastern University (Natural Science), 2020, 41(8): 1148-1152. | |
[12] | QU C, ZHOU H W, ZOU X F. Experimental study on random vibration fatigue S-N curve of GH188 alloy under high temperature environment[C]∥Proceedings of the 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering. Paris, France: Atlantis Press, 2018: 201-205. |
[13] |
MLIKOTA M, SCHMAUDER S, BOŽIĆ Ž. Calculation of the Wöhler (S-N) curve using a two-scale model[J]. International Journal of Fatigue, 2018, 114: 289-297.
doi: 10.1016/j.ijfatigue.2018.03.018 URL |
[14] | 王举金, 阳光武, 杨冰, 等. 基于结构应力法的环焊结构S-N曲线分析[J]. 焊接学报, 2019, 40(8): 63-68. |
WANG Jujin, YANG Guangwu, YANG Bing, et al. S-N curve analysis of ring welding based on structural stress method[J]. Transactions of the China Welding Institution, 2019, 40(8): 63-68. | |
[15] | 谢学涛, 何柏林, 邓海鹏. MB8镁合金焊接接头超高周疲劳性能[J]. 兵器材料科学与工程, 2018, 41(1): 20-23. |
XIE Xuetao, HE Bolin, DENG Haipeng. Ultra high cycle fatigue properties of MB8 magnesium alloy welded joint[J]. Ordnance Material Science and Enginee-ring, 2018, 41(1): 20-23. | |
[16] |
PANG J C, LI S X, WANG Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science and Engineering: A, 2013, 564: 331-341.
doi: 10.1016/j.msea.2012.11.103 URL |
[17] |
ZHANG M X, PANG J C, LI S X, et al. The effect of tailored deformation on fatigue strength of austenitic 316L stainless steel[J]. Advanced Engineering Materials, 2018, 20(11): 1800554.
doi: 10.1002/adem.201800554 URL |
[18] |
LIU Y B, LI Y D, LI S X, et al. Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2010, 32(8): 1351-1357.
doi: 10.1016/j.ijfatigue.2010.02.006 URL |
[19] | NAITO T, UEDA H, KIKUCHI M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface[J]. Me-tallurgical Transactions A, 1984, 15(7): 1431-1436. |
[20] | DUAN Q Q, PANG J C, ZHANG P, et al. Quantitative relations between S-N curve parameters and tensile strength for two steels: AISI 4340 and SCM 435[J]. Research & Reviews: Journal of Material Science, 2018, 6(1): 1-16. |
[21] |
MARSAVINA L, IACOVIELLO F, DAN PIRVULESCU L, et al. Engineering prediction of fatigue strength for AM50 magnesium alloys[J]. International Journal of Fatigue, 2019, 127: 10-15.
doi: 10.1016/j.ijfatigue.2019.05.028 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||