上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (2): 141-148.doi: 10.16183/j.cnki.jsjtu.2019.360
所属专题: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“工程力学”专题
收稿日期:
2019-12-12
出版日期:
2021-02-01
发布日期:
2021-03-03
通讯作者:
周岱
E-mail:zhoudai@sjtu.edu.cn
作者简介:
曹宇(1996-),男,江苏省盐城市人,硕士生,主要研究方向为海上风力机气动性能研究.
基金资助:
CAO Yua, HAN Zhaolonga,b, ZHOU Daia,b,c(), LEI Hanga
Received:
2019-12-12
Online:
2021-02-01
Published:
2021-03-03
Contact:
ZHOU Dai
E-mail:zhoudai@sjtu.edu.cn
摘要:
为了改进漂浮独立式垂直轴风力机的气动和稳定性能,提出风力机的新型结构设计理念,即同轴对转式垂直轴风力机.基于计算流体力学理论,借助雷诺时均剪切应力传输RANS SST k-ω湍流模型对风力机进行数值模拟,并结合涡流理论,比较对转式与独立式垂直轴风力机在不同叶尖速比(TSR)时的气动和稳定性能.结果表明,相同流场条件下,对转式风力机浮式平台的稳定性更强.当TSR<1.3时,长时间的失速状态使得对转式风力机的脱涡现象更严重,风能利用效率更低;当TSR>1.3时,外流场的风能更多地被对转式风力机转子吸收,风力机的远端涡流长度更短且脱涡强度更低,风能利用效率更高.同轴对转式的结构设计理念和分析方法对海上垂直轴风力机的性能优化有一定的参考价值.
中图分类号:
曹宇, 韩兆龙, 周岱, 雷航. 对转式垂直轴风力机气动性能研究[J]. 上海交通大学学报, 2021, 55(2): 141-148.
CAO Yu, HAN Zhaolong, ZHOU Dai, LEI Hang. Aerodynamic Performance of Counter-Rotating Vertical Axis Wind Turbine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 141-148.
[1] | JIN X, ZHAO G Y, GAO K J, et al. Darrieus vertical axis wind turbine: Basic research methods [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 212-225. |
[2] | 徐应瑜,胡志强,刘格梁. 10MW级海上浮式风机运动特性研究[J]. 海洋工程,2017, 35(3): 44-51. |
XU Yingyu, HU Zhiqiang, LIU Geliang. Kinetic characteristics research of the 10 MW-level offshore floating wind turbine[J]. Ocean Engineering, 2017, 35(3): 44-51. | |
[3] | 刘中柏,唐友刚,王涵,等. 半潜型风电浮式基础运动特性试验研究[J]. 哈尔滨工程大学学报,2015, 36(1): 51-56. |
LIU Zhongbai, TANG Yougang, WANG Han, et al. Experimental study of motion behaviors for semi-submersible floating foundation of wind power[J]. Journal of Harbin Engineering University, 2015, 36(1): 51-56. | |
[4] | LAM H F, PENG H Y. Measurements of the wake characteristics of co-and counter-rotating twin H-rotor vertical axis wind turbines[J]. Energy, 2017, 131: 13-26. |
[5] | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
[6] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 1598-1605. |
[7] | LEE Y T, LIM H C. Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine[J]. Renewable Energy, 2015, 83: 407-415. |
[8] | REZAEIHA A, KALKMAN I, BLOCKEN B. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine[J]. Applied Energy, 2017, 197: 132-150. |
[9] | GHASEMIAN M, NEJAT A. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy[J]. Energy Conversion and Management, 2015, 99: 210-220. |
[10] | REZAEIHA A, MONTAZERI H, BLOCKEN B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters[J]. Energy Conversion and Management, 2018, 169: 45-77. |
[11] | LI Q A, MAEDA T, KAMADA Y, et al. The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine[J]. Energy, 2016, 111: 260-271. |
[12] | BALDUZZI F, BIANCHINI A, MALECI R, et al. Critical issues in the CFD simulation of Darrieus wind turbines[J]. Renewable Energy, 2016, 85: 419-435. |
[13] | LI Q A, MAEDA T, KAMADA Y, et al. Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments[J]. Energy, 2017, 141: 1113-1123. |
[14] | LI Q A, MAEDA T, KAMADA Y, et al. Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test[J]. Renewable Energy, 2016, 90: 291-300. |
[15] | LEI H, ZHOU D, LU J B, et al. The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine[J]. Energy, 2017, 119: 369-383. |
[16] | LEI H, ZHOU D, BAO Y, et al. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2017, 133: 235-248. |
[17] | BEDON G, SCHMIDT P U, AAGAARD M H, et al. Computational assessment of the DeepWind aerodynamic performance with different blade and airfoil configurations[J]. Applied Energy, 2017, 185: 1100-1108. |
[1] | 丁恩宝, 常晟铭, 孙聪, 赵雷明, 吴浩. 半浸桨不同半径切面入水的水动力特性[J]. 上海交通大学学报, 2022, 56(9): 1188-1198. |
[2] | 吴怀娜, 冯东林, 刘源, 蓝淦洲, 陈仁朋. 基于门式抗浮框架的基坑开挖下卧隧道变形控制[J]. 上海交通大学学报, 2022, 56(9): 1227-1237. |
[3] | 刘谨豪, 严远忠, 张琪, 卞荣, 贺雷, 叶冠林. 地面堆载对既有隧道影响离心试验和数值分析[J]. 上海交通大学学报, 2022, 56(7): 886-896. |
[4] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[5] | 秦汉, 伍彬, 宋玉辉, 刘金, 陈兰. 细长体高速风洞超大攻角支撑干扰数值分析[J]. 空天防御, 2022, 5(3): 44-51. |
[6] | 薛飞, 王誉超, 伍彬. 高速飞行器后向分离特性研究[J]. 空天防御, 2022, 5(3): 80-86. |
[7] | 杜登轩 , 乐绍林 , 周 欢 , HtayHtayAung , 喻国良. 均匀来流中承台相对埋深对复合桩 墩局部水动力及冲刷的影响 [J]. 海洋工程装备与技术, 2022, 9(2): 64-71. |
[8] | 郑高媛, 赵亦希, 崔峻辉. 车身用铝饰条拉弯成形面畸变缺陷形成规律[J]. 上海交通大学学报, 2022, 56(1): 53-61. |
[9] | 金戈, 范珉, 周振栋, 谭勇, 钟小波. 升降式止回阀动态特性分析与改进[J]. 上海交通大学学报, 2021, 55(S2): 110-118. |
[10] | 徐德辉, 顾汉洋, 刘莉, 黄超. 新型锥形式旋叶汽水分离器热态试验与数值研究[J]. 上海交通大学学报, 2021, 55(9): 1087-1094. |
[11] | 刘恒, 伍锐, 孙硕. 非均匀流场螺旋桨空泡数值模拟[J]. 上海交通大学学报, 2021, 55(8): 976-983. |
[12] | 王超, 刘正, 李兴, 汪春辉, 徐佩. 自由状态冰块尺寸及初始位置参数对冰桨耦合水动力性能的影响[J]. 上海交通大学学报, 2021, 55(8): 990-1000. |
[13] | 李岩松, 丁鼎倩, 韩东, 刘静, 梁永图. 起伏输油管道临界完全携积水油速数值模拟[J]. 上海交通大学学报, 2021, 55(7): 878-890. |
[14] | 赵朋飞, 薛昕, 杨成. 模拟碱骨料反应引起的箍筋端部锚固退化对钢筋混凝土梁受剪性能的影响[J]. 上海交通大学学报, 2021, 55(6): 681-688. |
[15] | 张源, 李范春, 贾德君. 点阵压气机叶轮的设计与3D打印仿真[J]. 上海交通大学学报, 2021, 55(6): 729-740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||