[1]徐炯, 王彤, 杨波, 等. 静止水下气泡运动特性的测试与分析[J]. 水动力学研究与进展, 2008, 23(6): 709-714.
XU Jiong, WANG Tong, YANG Bo, et al. The measurement and analysis of motion behavior of bubbles in calm water[J]. Chinese Journal of Hydrodynamics, 2008, 23(6): 709-714.
[2]PREMLATA A R, TRIPATHI M K, SAHU K C. Dynamics of rising bubble inside a viscosity-stratified medium[J]. Physics of Fluids, 2015, 27(7): 072105.
[3]YU C H, YE Z T, SHEU T W H, et al. An improved interface preserving level set method for simulating three dimensional rising bubble[J]. International Journal of Heat & Mass Transfer, 2016, 103: 753-772.
[4]GU Z H, WEN H L, YE S, et al. Development of a mass-preserving level set redistancing algorithm for simulation of rising bubble[J]. Numerical Heat Transfer, Part B: Fundamentals, 2018, 74(4): 699-727.
[5]HIRT C, NICHOLS B. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[6]OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49.
[7]SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159.
[8]ADALSTEINSSON D, SETHIAN J. The fast construction of extension velocities in level set methods[J]. Journal of Computational Physics, 1999, 148(1): 2-22.
[9]JIANG G S, WU C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics[J]. Journal of Computational Physics, 1999, 150(2): 561-594.
[10]YU C H, WANG D, HE Z, et al. An optimized dispersion-relation-preserving combined compact difference scheme to solve advection equations[J]. Journal of Computational Physics, 2015, 300: 92-115.
[11]ANSARI M R, NIMVARI M E. Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method[J]. Annals of Nuclear Energy, 2011, 38 (12): 2770-2778.
[12]STARINSHAK D P, KARNI S, ROE P L. A new level set model for multimaterial flows[J]. Journal of Computational Physics, 2014, 262: 1-16.
[13]梅登飞, 范浩杰, 田凤国, 等. 黏性与非黏性颗粒在流化床中的气泡行为模拟[J]. 上海交通大学学报, 2015, 49(5): 577-582.
MEI Dengfei, FAN Haojie, TIAN Fengguo, et al. Simulation of bubble behavior of cohesive and non-cohesive particles in fluidization[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5): 577-582.
[14]李少白, 徐双, 范俊赓, 等. 非牛顿流体中在线双气泡相互作用的数值模拟[J]. 沈阳航空航天大学学报, 2017, 34(4): 63-68.
LI Shaobai, XU Shuang, FAN Jungeng, et al. Numerical simulation of interaction between in-line two bubbles in non-Newtonian fluids[J]. Journal of Shenyang Aerospace University, 2017, 34(4): 63-68.
[15]梁兵. 油体表面张力系数与其粘滞系数随温度变化的比较[J]. 百色学院学报, 2015, 28(6): 123-127.
LIANG Bing. Comparison of surface tension coefficient and viscous coefficient of oil body with temperature[J]. Journal of Baise University, 2015, 28(6): 123-127.
[16]SUSSMAN M, SMEREKA P. Axisymmetric free boundary problems[J]. Journal of Fluid Mechanics, 1997, 341: 269-294. |