[1]HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038.
[2]LEE J, KIM S, LEE J, et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection[J]. Nanoscale, 2014, 6(20): 11932-11939.
[3]JUNG S, KIM J H, KIM J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces[J]. Advanced Materials, 2014, 26(28): 4825-4830.
[4]冯雪, 陆炳卫, 吴坚, 等. 可延展柔性无机微纳电子器件原理与研究进展[J]. 物理学报, 2014, 63(1): 014201.
FENG Xue, LU Bingwei, WU Jian, et al. Principles and research progress of ductile flexible inorganic micro/nanoelectronic devices[J]. Journal of Physics, 2014, 63(1): 014201.
[5]YU G, HU J, TAN J, et al. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins[J]. Nanotechnology, 2018, 29(11): 115502.
[6]KHANG D Y, JIANG H, HUANG Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311(5758): 208-212.
[7]KIM D H, XIAO J, SONG J, et al. Stretchable, curvilinear electronics based on inorganic materials[J]. Advanced Materials, 2010, 22(19): 2108-2124.
[8]FRUTIGER A, MUTH J T, VOGT D M, et al. Capacitive soft strain sensors via multicore-shell fiber printing[J]. Advanced Materials, 2015, 27(15): 2440-2446.
[9]JIA J, HUANG G, DENG J, et al. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J]. Nanoscale, 2019, 11(10): 4258-4266.
[10]PARK J, KIM J, HONG J, et al. Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins[J]. NPG Asia Materials, 2018, 10(4): 163-176.
[11]PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5): 4689-4697.
[12]PARK H, JEONG Y R, YUN J, et al. Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars[J]. ACS Nano, 2015, 9(10): 9974-9985.
[13]CHOONG C, SHIM M, LEE B, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21): 3451-3458.
[14]GUO S Z, QIU K, MENG F, et al. 3D printed stretchable tactile sensors[J]. Advanced Materials, 2017, 29(27): 1701218.
[15]CHEN H, SU Z, SONG Y, et al. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge[J]. Advanced Functional Materials, 2017, 27(3): 1604434.
[16]HABIBI M, DARBARI S, RAJABALI S, et al. Fabrication of a graphene-based pressure sensor by utilising field emission behavior of carbon nanotubes[J]. Carbon, 2016, 96: 259-267.
[17]TAO L Q, ZHANG K N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano, 2017, 11(9): 8790-8795.
[18]LIN L, XIE Y, WANG S, et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging[J]. ACS Nano, 2013, 7(9): 8266-8274.
[19]LEE Y, PARK J, CHO S, et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range[J]. ACS Nano, 2018, 12(4): 4045-4054.
[20]PANG Y, ZHANG K, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS Nano, 2018, 12(3): 2346-2354.
[21]WANG J, JIU J, NOGI M, et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires[J]. Nanoscale, 2015, 7(7): 2926-2932.
[22]WU W, WEN X, WANG Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science, 2013, 340(6135): 952-957. |