[1]STAFFORD B, OSBORNE N. Technology development for steering and stabilizers[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2008, 222(2): 41-52.
[2]费千. 船舶辅机[M]. 大连: 大连海事大学出版社, 2010.
FEI Qian. Marine auxiliary machinery[M]. Dalian: Dalian Maritime University Press, 2010.
[3]ZHOU J, Yang Y, Ding S, et al. A fault detection scheme for ship propulsion systems using randomized algorithm techniques[J]. Control Engineering Practice, 2018, 81(12): 65-72.
[4]王少萍. 液压系统故障诊断与健康管理技术[M]. 北京: 机械工业出版社, 2014.
WANG Shaoping. Fault diagnosis and health ma-nagement technologies for hydraulic system[M]. Beijing: China Machine Press, 2014.
[5]GAO Z, CECATI C, DING S. A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767.
[6]鄢镕易, 何潇, 周东华. 线性离散系统间歇故障的鲁棒检测方法[J]. 上海交通大学学报, 2015, 49(6): 812-818.
YAN Rongyi, HE Xiao, ZHOU Donghua. Robust detection of intermittent faults of linear discrete-time stochastic systems[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 812-818.
[7]GAO Z, LIU X, CHEN M. Unknown input obser-ver-based robust fault estimation for systems corrupted by partially decoupled disturbances[J]. IEEE Tran-sactions on Industrial Electronics, 2016, 63(4): 2537-2547.
[8]SEPASI M, SASSANI F. On-line fault diagnosis of hydraulic systems using Unscented Kalman Filter[J]. International Journal of Control Automation and Systems, 2010, 8(1): 149-156.
[9]WU X, LI Y, LI F, et al. Adaptive estimation-based leakage detection for a wind turbine hydraulic pitching system[J]. IEEE-ASME Transactions on Mechatro-nics, 2012, 17(5): 907-914.
[10]KHAN H, ABOU S C, SEPEHRI N. Nonlinear observer-based fault detection technique for electro-hydraulic servo-positioning systems[J]. Mechatro-nics, 2005, 15(9): 1037-1059.
[11]SHI Z, GU F, LENNOX B, et al. The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system[J]. Control Engineering Practice, 2005, 13(11): 1357-1367.
[12]BAHRAMI M, NARAGHI M, ZAREINEJAD M. Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems[J]. ISA Transactions, 2018, 76(5): 235-245.
[13]PALLI G, STRANO S, TERZO M. Sliding-mode observers for state and disturbance estimation in electro-hydraulic systems[J]. Control Engineering Practice, 2018, 74(5): 58-70.
[14]FALUGI P, MAYNE D Q. Getting robustness against unstructured uncertainty: a tube-based mpc approach[J]. IEEE Transactions on Automatic Control, 2014, 59(5): 1290-1295.
[15]WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electro-nics, 2018, 65(7): 5990-5998.
[16]纪洪泉, 何潇, 周东华. 基于多元统计分析的故障检测方法[J]. 上海交通大学学报, 2015, 49(6): 842-848.
JI Hongquan, HE Xiao, ZHOU Donghua. Fault detection techniques based on multivariate statistical analysis[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6): 842-848.
[17]SHARIFI S, TIVAY A, REZAEI S, et al. Leakage fault detection in electro-hydraulic servo systems using a nonlinear representation learning approach[J]. Isa Transactions, 2018, 73(2): 154-164.
[18]HE X. Fault diagnosis approach of hydraulic system using FARX model[J]. Procedia Engineering, 2011, 15(1): 949-953.
[19]FU X B, LIU B, ZHANG Y C, et al. Fault diagnosis of hydraulic system in large forging hydraulic press[J]. Measurement, 2014, 49(1): 390-396.
[20]DAI X, GAO Z. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238.
[21]王春行. 液压控制系统[M]. 北京: 机械工业出版社, 2011.
WANG Chunxing. Hydraulic control system [M]. Beijing: China Machine Press, 2011.
[22]XU W, CHEN W, LIANG Y. Feasibility study on the least square method for fitting non-Gaussian noise data[J]. Physica A Statistical Mechanics and Its Applications, 2018, 492: 1917-1930.
[23]魏彤, 田双彪. 基于RLS-DE算法的多变量径向磁轴承系统辨识[J]. 机械工程学报, 2016, 52(3): 143-150.
WEI Tong, TIAN Shuangbiao. The identification of multivariable radial magnetic bearing system based on RLS-DE algorithm[J]. Journal of Mechanical Engineering, 2016, 52(3): 143-150.
[24]CHEN M, CHEN C. Robust nonlinear observer for lipschitz nonlinear systems subject to disturbances[J]. IEEE Tran-sactions on Automatic Control, 2007, 52(12): 2365-2369.
[25]DING S X. Model-based fault diagnosis techniques: design schemes, algorithms, and tools[M]. Berlin Heidelberg: Springer-Verlag, 2008.
[26]GAO Z, LIU X, CHEN M. Unknown input observer based robust fault estimation for systems corrupted by partially-decoupled disturbances[J]. IEEE Tran-sactions on Industrial Electronics, 2015, 63(4): 1-1.
[27]ZEMOUCHE A, BOUTAYEB M. On LMI conditions to design observers for Lipschitz nonlinear systems[J]. Automatica, 2013, 49(2): 585-591.
[28]HAN H, YANG Y, LI L, et al. Observer-based fault detection for uncertain nonlinear systems[J]. Journal of the Franklin Institute, 2018, 355(3): 1278-1295.
[29]WITCZAK P, PATAN K, WITCZAK M, et al. A neural network approach to simultaneous state and actuator fault estimation under unknown input decoup-ling[J]. Neurocomputing, 2017, 250: 65-75.
[30]ABBASPOUR A, ABOUTALEBI P, YEN K, et al. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV[J]. ISA Transactions, 2017, 67: 317-329. |