[1]SLOAN E D. Physical/chemical properties of gas hydrates and application to world margin stability and climatic change[J]. Geological Society, London, Special Publications, 1998, 137(1): 31-50.
[2]KVENVOLDEN K A. Gas hydrates: Geological perspective and global change[J]. Reviews of Geophy-sics, 1993, 31(2): 173-187.
[3]HOVLAND M, GUDMESTAD O T. Potential influence of gas hydrates on seabed installations[M]//PAULL C K, DILLON W P. Natural gas hydrates: Occurrence, distribution, and detection. Washington, USA: American Geophysical Union, 2001: 307-315.
[4]LI A, DAVIES R J, YANG J X. Gas trapped below hydrate as a primer for submarine slope failures[J]. Marine Geology, 2016, 380: 264-271.
[5]ELGER J, BERNDT C, RPKE L, et al. Submarine slope failures due to pipe structure formation[J]. Nature Communications, 2018, 9: 715.
[6]LU X B, CHEN X D, LU L, et al. Numerical simulation on the marine landslide due to gas hydrate dissociation[J]. Environmental Earth Sciences, 2017, 76(4): 172.
[7]HANDWERGER A L, REMPEL A W, SKARBEK R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445.
[8]LI C L, WU S G, ZHU Z Y, et al. The assessment of submarine slope instability in Baiyun Sag using gray clustering method[J]. Natural Hazards, 2014, 74(2): 1179-1190.
[9]AKAKI T, KIMOTO S, OKA F. Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization[J]. Japanese Geotechnical Society Special Publication, 2016, 2(18): 676-680.
[10]MORIDIS G J, COLLETT T S, BOSWELL R, et al. Gas hydrates as a potential energy source: State of knowledge and challenges[M]//LEE J W. Advanced Biofuels and Bioproducts. New York, USA: Springer, 2013: 977-1033.
[11]KLAR A, SOGA K, NG M Y A. Coupled deformation-flow analysis for methane hydrate extraction[J]. Géotechnique, 2010, 60(10): 765-776.
[12]ZHANG X H, LU X B, SHI Y H, et al. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation[J]. Ocean Engineering, 2015, 105: 1-9.
[13]ZHANG X H, LU X B. Initiation and expansion of layered fracture in sediments due to thermal-induced hydrate dissociation[J]. Journal of Petroleum Science and Engineering, 2015, 133: 881-888.
[14]ZHANG X H, LU X B, CHEN X D, et al. Mechanism of soil stratum instability induced by hydrate dissociation[J]. Ocean Engineering, 2016, 122: 74-83.
[15]YANG S L, CHOI J C, VANNESTE M, et al. Effects of gas hydrates dissociation on clays and submarine slope stability[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 941-952.
[16]KWON T H, OH T M, CHOO Y W, et al. Geo-mechanical and thermal responses of hydrate-bearing sediments subjected to thermal stimulation: Physical modeling using a geotechnical centrifuge[J]. Energy & Fuels, 2013, 27(8): 4507-4522.
[17]ZHANG J H, LIN H L, WANG K Z. Centrifuge modeling and analysis of submarine landslides triggered by elevated pore pressure[J]. Ocean Engineering, 2015, 109: 419-429.
[18]BARRY M A, BOUDREAU B P, JOHNSON B D. Gas domes in soft cohesive sediments[J]. Geology, 2012, 40(4): 379-382.
[19]魏伟, 陈旭东, 鲁晓兵, 等. 水合物分解气体泄漏引起的海床破坏实验研究[J]. 力学与实践, 2013, 35(5): 30-34.
WEI Wei, CHEN Xudong, LU Xiaobing, et al. Experimental study of the sea floor damage due to gas escape in hydrate dissociation[J]. Mechanics in Engineering, 2013, 35(5): 30-34.
[20]栾锡武, 孙钿奇, 彭学超. 南海北部陆架南北卫浅滩的成因及油气地质意义[J]. 地质学报, 2012, 86(4): 626-640.
LUAN Xiwu, SUN Dianqi, PENG Xuechao. Genesis of the Nanbeiwei shoal on the shelf of the northern South China Sea and its petroliferous significance[J]. Acta Geologica Sinica, 2012, 86(4): 626-640.
[21]HYMAN D, BURSIK M. Deformation of volcanic materials by pore pressurization: Analog experiments with simplified geometry[J]. Bulletin of Volcanology, 2018, 80(3): 19.
[22]ZHENG R Y, LI S X, LI Q P, et al. Using similarity theory to design natural gas hydrate experimental model[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 421-427.
[23]GALLAND O, GISLER G R, HAUG T. Morphology and dynamics of explosive vents through cohesive rock formations[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 4708-4728.
[24]WEIJERMARS R, SCHMELING H. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity) [J]. Physics of the Earthand Planetary Interiors, 1986, 43(4): 316-330.
[25]YUAN Q, SUN C Y, WANG X H, et al. Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor[J]. Fuel, 2013, 106: 417-424.
[26]万义钊, 吴能友, 胡高伟, 等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业, 2018, 38(4): 117-128.
WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4): 117-128.
[27]朱超祁, 贾永刚, 张民生, 等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5): 863-870.
ZHU Chaoqi, JIA Yonggang, ZHANG Minsheng, et al. Surface sediment strength in bed-slope of northern South China Sea[J]. Journal of Engineering Geo-logy, 2016, 24(5): 863-870.
[28]HE Y, ZHONG G F, WANG L L, et al. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 546-560. |