上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (10): 1249-1258.doi: 10.16183/j.cnki.jsjtu.2019.10.015
李春祥,裴杨从琪,殷潇
出版日期:
2019-10-28
发布日期:
2019-11-01
通讯作者:
李春祥(1964-),男,安徽省舒城县人,教授,博士生导师,主要研究结构抗震与风工程、结构振动控制、人工智能与结构健康监测. 电话(Tel.):13512129922;E-mail:Li-chunxiang@vip.sina.com.
基金资助:
LI Chunxiang,PEI Yangcongqi,YIN Xiao
Online:
2019-10-28
Published:
2019-11-01
摘要: 运用经验模态分解(EMD)将某大跨度膜结构测点非平稳风压分解为一系列相对平稳的固有模态函数和一个剩余分量.为消除实测风压中噪声对固有模态函数的影响,使用小波变换对每个固有模态函数进行去噪,将去噪后的固有模态函数及剩余分量作为样本输入.分别将径向基核函数、Hermite核函数及Hermite组合核与最小二乘支持向量机结合(LSSVM),运用粒子群算法(PSO)对3种算法的正则化参数及核参数进行智能寻优,建立基于径向基核函数、Hermite核函数及Hermite组合核的PSO-LSSVM风压预测算法,并基于超高层建筑实测风压验证了组合模型的鲁棒性.单点预测结果表明,基于Hermite组合核的PSO-LSSVM的预测算法较其余两种算法具有更高预测精度及泛化能力;空间点预测结果进一步证明了该方法对于非平稳非高斯风压预测的有效性.
中图分类号:
李春祥,裴杨从琪,殷潇. 基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测[J]. 上海交通大学学报, 2019, 53(10): 1249-1258.
LI Chunxiang,PEI Yangcongqi,YIN Xiao. Nonstationary Non-Gaussian Wind Pressure Prediction Using Hermite Combination Kernel Based EMD-WT-LSSVM[J]. Journal of Shanghai Jiaotong University, 2019, 53(10): 1249-1258.
[1]YUAN X H, CHEN C, YUAN Y B, et al. Short-term wind power prediction based on LSSVM-GSA model[J]. Energy Conversion and Management, 2015, 101: 393-401. [2]DE GIORGI M, CAMPILONGO S, FICARELLA A, et al. Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)[J]. Energies, 2014, 7(8): 5251-5272. [3]WANG H, WU T, TAO T Y, et al. Measurements and analysis of non-stationary wind characteristics at sutong bridge in typhoon damrey[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151: 100-106. [4]吴本刚, 傅继阳, 吴玖荣. 实测风场风速风向耦合的三维非平稳特征研究[J]. 建筑结构学报, 2016, 37(2): 106-113. WU Bengang, FU Jiyang, WU Jiurong. Three dimensional non-stationary analysis on field measured wind data with coupling wind speed and wind direction[J]. Journal of Building Structures, 2016, 37(2): 106-113. [5]孙旭峰, BITSUAMLAK G T, 胡超. 屋盖结构脉动风压非高斯特性分析的极限流线方法[J]. 振动与冲击, 2015, 34(8): 157-162. SUN Xufeng, BITSUAMLAK G T, HU Chao. Li-miting streamline method for analysis of non-Gaussian property of roof structures’ fluctuating wind pressure[J]. Journal of Vibration and Shock, 2015, 34(8): 157-162. [6]DYBAA J, ZIMROZ R. Rolling bearing diagnosing method based on empirical mode decomposition of machine vibration signal[J]. Applied Acoustics, 2014, 77: 195-203. [7]KATICHA S W, FLINTSCH G, BRYCE J, et al. Wavelet denoising of TSD deflection slope measurements for improved pavement structural evaluation[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(6): 399-415. [8]SRIVASTAVA M, GEORGIEVA E R, FREED J H. A new wavelet denoising method for experimental time-domain signals: pulsed dipolar electron spin re-sonance[J]. The Journal of Physical Chemistry A, 2017, 121(12): 2452-2465. [9]SU J Q, WANG X, LIANG Y, et al. GA-based support vector machine model for the prediction of monthly reservoir storage[J]. Journal of Hydrologic Engineering, 2014, 19(7): 1430-1437. [10]AHMADI M A, BAHADORI A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells[J]. Fuel, 2015, 153: 276-283. [11]HOOSHMAND MOGHADDAM V, HAMIDZADEH J. New hermite orthogonal polynomial kernel and combined kernels in support vector machine classifier[J]. Pattern Recognition, 2016, 60: 921-935. [12]张志宏, 刘中华, 董石麟. 强/台风作用下大跨空间索桁体系现场风压风振实测研究[J]. 上海师范大学学报(自然科学版), 2013, 42(5): 546-550. ZHANG Zhihong, LIU Zhonghua, DONG Shilin. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 42(5): 546-550. [13]SUBASI A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders[J]. Computers in Biology and Medicine, 2013, 43(5): 576-586. [14]SELAKOV A, CVIJETINOVI D, MILOVI L, et al. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank[J]. Applied Soft Computing, 2014, 16: 80-88. |
[1] | 李晓旺, 赵海涛, 陈吉安. 基于测点优选和改进L曲线法的动载荷识别[J]. 上海交通大学学报, 2020, 54(6): 569-576. |
[2] | 李春祥, 张浩怡. 基于混合多变量经验模态分解和极限学习机的非平稳过程预测[J]. 上海交通大学学报, 2020, 54(4): 376-386. |
[3] | 周锦瑜,陈务军,胡建辉,赵兵,王丽君. 考虑预应力作用的索杆张力结构冗余度分析[J]. 上海交通大学学报(自然版), 2017, 51(7): 774-780. |
[4] | 李锦华1,李春祥2,蒋磊2,邓莹2. 多变量非高斯脉动风压模拟的非迭代法[J]. 上海交通大学学报(自然版), 2017, 51(4): 462-. |
[5] | 周锦瑜, 陈务军, 杜斌, 高成军. 预张力索杆体系分布式静不定与动不定分析[J]. 上海交通大学学报, 2016, 50(03): 345-350. |
[6] | 胡向东,郭旺,张洛瑜. 无限大区域内四管冻结的稳态温度场解析解[J]. 上海交通大学学报(自然版), 2013, 47(09): 1367-1371. |
[7] | 张文龙, 于洪洁. 一种星形神经网络的混沌同步[J]. 上海交通大学学报(自然版), 2013, 47(02): 220-225. |
[8] | 贾红学a, 龙丹冰a, 刘西拉b. 特大增量步算法在板分析中的应用[J]. 上海交通大学学报(自然版), 2013, 47(02): 187-192. |
[9] | 龙丹冰a, 刘西拉b. 针对基于广义逆的特大增量步算法的二维拓展[J]. 上海交通大学学报(自然版), 2012, 46(10): 1686-1692. |
[10] | 金玉龙, 吴天行. 集装箱码头岸桥结构的动力相似分析与试验验证[J]. 上海交通大学学报(自然版), 2012, 46(10): 1609-1615. |
[11] | 桂晓澜, 周岱, 李俊龙. 基于计算流体动力学法的风场模拟和流/固耦合问题[J]. 上海交通大学学报(自然版), 2012, 46(01): 158-166. |
[12] | 杨有贞,葛修润. 层状地基问题的辛几何本征解法[J]. 上海交通大学学报(自然版), 2008, 42(11): 1876-1879. |
[13] | 蓝声宁,李春祥. 多层斜拉索钢抗弯框架体系及抗侧力性能[J]. 上海交通大学学报(自然版), 2014, 48(06): 816-820. |
[14] | 李春祥,殷潇. 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报(自然版), 2018, 52(11): 1516-1523. |
[15] | 于洪洁,董奕煊. 由Rossler混沌系统构建的复合型网络的同步[J]. 上海交通大学学报(自然版), 2018, 52(12): 1559-1564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||