上海交通大学学报 ›› 2019, Vol. 53 ›› Issue (10): 1249-1258.doi: 10.16183/j.cnki.jsjtu.2019.10.015

• 学报(中文) • 上一篇    下一篇

基于Hermite组合核EMD-WT-LSSVM的非平稳非高斯风压预测

李春祥,裴杨从琪,殷潇   

  1. 上海大学 土木工程系, 上海 200444
  • 出版日期:2019-10-28 发布日期:2019-11-01
  • 通讯作者: 李春祥(1964-),男,安徽省舒城县人,教授,博士生导师,主要研究结构抗震与风工程、结构振动控制、人工智能与结构健康监测. 电话(Tel.):13512129922;E-mail:Li-chunxiang@vip.sina.com.
  • 基金资助:
    国家自然基金(51378304,51778354)资助项目

Nonstationary Non-Gaussian Wind Pressure Prediction Using Hermite Combination Kernel Based EMD-WT-LSSVM

LI Chunxiang,PEI Yangcongqi,YIN Xiao   

  1. Department of Civil Engineering, Shanghai University, Shanghai 200444
  • Online:2019-10-28 Published:2019-11-01

摘要: 运用经验模态分解(EMD)将某大跨度膜结构测点非平稳风压分解为一系列相对平稳的固有模态函数和一个剩余分量.为消除实测风压中噪声对固有模态函数的影响,使用小波变换对每个固有模态函数进行去噪,将去噪后的固有模态函数及剩余分量作为样本输入.分别将径向基核函数、Hermite核函数及Hermite组合核与最小二乘支持向量机结合(LSSVM),运用粒子群算法(PSO)对3种算法的正则化参数及核参数进行智能寻优,建立基于径向基核函数、Hermite核函数及Hermite组合核的PSO-LSSVM风压预测算法,并基于超高层建筑实测风压验证了组合模型的鲁棒性.单点预测结果表明,基于Hermite组合核的PSO-LSSVM的预测算法较其余两种算法具有更高预测精度及泛化能力;空间点预测结果进一步证明了该方法对于非平稳非高斯风压预测的有效性.

关键词: 风压预测; 经验模态分解; 小波变换; 最小二乘支持向量机; 粒子群算法

Abstract: Empirical mode decomposition (EMD) is used to decompose the non-stationary wind pressure of a long-span membrane structure into a series of relatively stationary intrinsic mode functions and a residual component. In order to eliminate the effect of noise on the intrinsic mode function in actual wind pressure measurement, each intrinsic mode function is denoised by using wavelet transform. The residual components and the intrinsic mode functions after denoising are input as samples. Radial basis kernel, Hermite kernel and Hermite combination kernel are combined with least square support vector machine (LSSVM) respectively. Subsequently, optimizations for penalty parameters and kernel parameters are conducted using particle swarm optimization (PSO) and thus three algorithms based on PSO-LSSVM are proposed for wind pressure prediction. In addition, the robustness of the combined model is verified based on the measured wind pressure on the super high-rise building. The single point predicting indexes show that the prediction algorithm using Hermite combination kernel based on PSO-LSSVM has higher prediction accuracy and generalization ability compared to the other two algorithms. The results of spatial point prediction further prove the validity of this method for non-stationary non-Gaussian wind pressure prediction.

Key words: wind pressure prediction; empirical mode decomposition (EMD); wavelet transform; least square su-pport vector machine (LSSVM); particle swarm optimization (PSO)

中图分类号: