[1]程温鸣, 彭令, 牛瑞卿. 基于粗糙集理论的滑坡易发性评价——以三峡库区秭归县境内为例[J]. 中南大学学报(自然科学版), 2013, 44(3): 1083-1090.
CHENG Wenming, PENG Ling, NIU Ruiqing. Landslide suspectibility assessment based on rough set theory: Taking Zigui County territory in Three Gorges Reservoir for example[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1083-1090.
[2]REN F, WU X, ZHANG K, et al. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China[J]. Environment Earth Sciences, 2015, 73(8): 4791-4804.
[3]SHIHABUDHEEN K V, PILLAI G N, PEETHAMBARAN B. Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS)[J]. Applied Soft Computing, 2017, 61: 892-904.
[4]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[5]邓冬梅, 梁烨, 王亮清, 等. 基于时间序列EEMD重构的滑坡位移PSO-SVR预测方法——以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 1001-1009.
DENG Dongmei, LIANG Ye, WANG Liangqing, et al. PSO-SVR prediction method for landslide displacement based on reconstruction of time series by EEMD: A case study of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 1001-1009.
[6]WU Z, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[7]CAI Z, XU W, MENG Y, et al. Prediction of landslide displacement based on GA-LSSVM with multiple factors[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(2): 637-646.
[8]ZHOU C, YIN K, CAO Y, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China [J]. Engineering Geology, 2016, 204: 108-120.
[9]DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[10]EBERHART R. KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43.
[11]吕振肃, 侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报, 2004, 32(3): 416-420.
L Zhensu, HOU Zhirong. Particle swarm optimization with adaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3): 416-420.
[12]VAPNIK V N. The nature of statistical learning theory [M]. 2nd ed. New York, USA: Springer-Verlag, 2000.
[13]张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391.
ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391.
[14]陈果, 周伽. 小样本数据的支持向量机回归模型参数及预测区间研究[J]. 计量学报, 2008, 29(1): 92-96.
CHEN Guo, ZHOU Jia. Research on parameters and forecasting interval of support vector regression mo-del to small sample [J]. Acta Metrologica Sinica, 2008, 29(1): 92-96. |