[1]VAOVP, SOJKA J. Hydrogen embrittlement of duplex steel tested using slow strain rate test[J]. Metalurgija, 2014, 53(2): 163-166.
[2]SRLVERSTEIN R, DAN E, GLAM B, et al. Influence of hydrogen on microstructure and dynamic strength of lean duplex stainless steel[J]. Journal of Materials Science, 2014, 49(11): 4025-4031.
[3]SILVA B R S D, SALVIO F, SANTOS D S D. Hydrogen induced stress cracking in UNS S32750 super duplex stainless steel tube weld joint[J]. International Journal of Hydrogen Energy, 2015, 40(47): 17091-17101.
[4]SILVERSTEIN R, ELIEZER D. Hydrogen trapping mechanism of different duplex stainless steels alloys[J]. Journal of Alloys and Compounds, 2015, 644: 280-286.
[5]褚武扬. 氢脆和应力腐蚀[M]. 北京: 科学出版社, 2013.
CHU Wuyang. Hydrogen embrittlement and stress corrosion cracking[M]. Beijing: Science Press, 2013.
[6]TURNBULL A, BEYLEGAARD E L, HUTCHINGS R B. Hydrogen transport in SAF 2205 and SAF 2507 duplex stainless steels[C]∥Hydrogen Transport and Cracking in Metals. London: Institute of Materials, 1995, 605: 268-279.
[7]OWCZAREK E, ZAKROCZYMSKI T. Hydrogen transport in a duplex stainless steel[J]. Acta Materialia, 2000, 48(12): 3059-3070.
[8]ZAKROCZYMSKI T, OWCZAREK E. Electrochemical investigation of hydrogen absorption in a duplex stainless steel[J]. Acta Materialia, 2002, 50(10): 2701-2713.
[9]MENTE T, BOELLINGHAUS T. Mesoscale modeling of hydrogen-assisted cracking in duplex stainless steels[J]. Welding in the World, 2014, 58(2): 205-216.
[10]OLDEN V, SAAI A, JOHNSEN R, et al. FE simulation of hydrogen diffusion in duplex stainless steel[J]. International Journal of Hydrogen Energy, 2014, 39(2): 1156-1163.
[11]WAGENBLAST H, WRIEDT H A. Dilation of alpha iron by dissolved hydrogen at 450℃ to 800℃[J]. Metallurgical and Materials Transactions B, 1971, 2(5): 1393-1397.
[12]MINE Y, NARAZAKI C, MURAKAMI K, et al. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth[J]. International Journal of Hydrogen Energy, 2009, 34(2): 1097-1107.
[13]OLDEN V, THAULOW C, JOHNSEN R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials & Design, 2008, 29(10): 1934-1948.
[14]CHOU S L, TSAI W T. Effect of grain size on the hydrogen-assisted cracking in duplex stainless steels[J]. Materials Science and Engineering A, 1999, 270(2): 219-224.
[15]何建宏, 唐祥云, 陈南平. 氢在(α+γ)双相不锈钢中的扩散[J]. 金属学报, 1989, 25(1): 37-41.
HE Jianhong, TANG Xiangyun, CHEN Nanping. Diffusion of hydrogen in (α+γ) duplex stainless steel[J]. Acta Metallurgica Sinica, 1989, 25(1): 37-41.
[16]GESNOUIN C, HAZARABEDIAN A, BRUZZONI P, et al. Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels[J]. Corrosion Science, 2004, 46(7): 1633-1647.
[17]SHARRFEDDIN A, MUSA S M, ELSHAWESH F M. Role of structural orientation on the susceptibility of 2205 duplex stainless steel to hydrogen embrittlement[C]∥International Congress on Advances in Applied Physics and Materials. New York, USA: Ame-rican Institute of Physics, 2012, 1476: 199-203. |