上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (8): 946-953.doi: 10.16183/j.cnki.jsjtu.2018.08.010
吕亚飞1,赵亮1,贺治国1,2,林颖典1,袁野平1,2,胡鹏1
发布日期:
2025-07-02
通讯作者:
贺治国,男,教授,博士生导师,电话(Tel.):13968116493; E-mail:hezhiguo@zju.edu.cn.
作者简介:
吕亚飞(1992-),男,河南省邓州市人,硕士生,研究方向为异重流水动力实验.
基金资助:
LV Yafei,ZHAO Liang,HE Zhiguo,LIN Yingtien,YUAN Yeping,HU Peng
Published:
2025-07-02
摘要: 在水利工程中,底床地形突变对异重流的运动过程有十分重要的影响.利用高速相机和激光粒子图像测速技术(PIV),对开闸式盐水异重流在平坡定常速阶段遇到障碍物时的运动特性进行研究.实验结果表明,障碍物对异重流头部速度的作用范围约为5个闸室长,对异重流加速阶段头部速度最大值的减幅影响很小,仅为1%左右.当异重流厚度与障碍物高度相当时,异重流在环境水体中的最大作用高度值会增加近1倍,同等工况时,矩形断面下该值会比三角形断面下增大约20%.障碍物前、后和顶部3个特征断面处异重流能量和厚度达到最大值的时间不同步,厚度最大值的时刻比能量滞后1.5~2s.障碍物前、后特征断面处能量近似单峰分布,而顶部断面则为双峰分布.障碍物前断面最大厚度增大约20%,最大能量损失约40%.结果可为复杂地形水利环境下污染物的输移扩散、海底电缆保护、港池回淤等研究提供科学依据.
中图分类号:
吕亚飞1,赵亮1,贺治国1,2,林颖典1,袁野平1,2,胡鹏1. 障碍物对平坡异重流运动特性的影响[J]. 上海交通大学学报, 2018, 52(8): 946-953.
LV Yafei,ZHAO Liang,HE Zhiguo,LIN Yingtien,YUAN Yeping,HU Peng. Impacts of Obstacle on Gravity Currents Propagating Along a Flat Bed[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 946-953.
[1]范家骅. 异重流与泥沙工程实验与设计[M]. 北京: 中国水利水电出版社, 2011. FAN Jiahua .Density currents and sedimentation engineering experiments and design[M]. Beijing: China Water & Power Press, 2011. [2]ZHANG X F, REN S, LU J Q, et al. Effect of thermal stratification on interflow travel time in stratified reservoir[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 265-278. [3]SIMPSON J E. Gravity currents in the laboratory, atmosphere, and ocean[J]. Annual Review of Fluid Mechanics, 1982, 14 (1): 213-234. [4]KNELLER B, BUCKEE C. The structure and fluid mechanics of turbidity current: A review of some recent studies and their geological implications[J]. Sedimentology, 2000, 47(S1): 62-94. [5]OSHAGHI M R, AFSHIN H, FIROOZABADI B. Experimental investigation of the effect of obstacles on the behavior of turbidity currents[J]. Canadian Journal of Civil Engineering, 2013, 40(4): 343-352. [6]彭明. 开闸式异重流的流动结构和颗粒输运的实验研究[D]. 北京:北京大学, 2013. PENG Ming. Experimental study on flow structure and particle dispersion of lock-exchange gravity currents[D]. Beijing: Peking University, 2013. [7]徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10): 98-105. XU Jingping. Turbidity current research in past century: An overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98-105. [8]GREENSPAN H P, YOUNG R E. Flow over a containment dyke [J]. Journal of Fluid Mechanics, 1978, 87(1): 179-192. [9]ROTTMAN J W, SIMPSON J E, HUNT J C R, et al. Unsteady gravity current flows over obstacles: Some observations and analysis related to the phase II trials[J]. Journal of Hazardous Materials, 1985, 11: 325-340. [10]CESARE G D, OEHY C D, SCHLEISS A J. Experiments on turbidity currents influenced by solid and permeable obstacles and water jet screens[C]∥6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering. Prague, Czech Republic: ISUD, 2008: 41-44. [11]LANE-SERFF G F, BEAL L M, HADFIELD T D. Gravity current flow over obstacles[J]. Journal of Fluid Mechanics, 1995, 292: 39-53. [12]PRINOS P. Two-dimensional density currents over obstacles (Proceedings of 28th IAHR Congress: Theme D) [DB/CD]. Graz, Austria: IKEE, 1999. [13]OEHY C D, SCHLEISS A J. Control of turbidity currents in reservoirs by solid and permeable obstacles[J]. Journal of Hydraulic Engineering, 2007, 133(6): 637-648. [14]GONZALEZ-JUEZ E, MEIBURG E. Shallow-water analysis of gravity-current flows past isolated obstacles[J]. Journal of Fluid Mechanics, 2009, 635: 415-438. [15]OSHAGHI M R, GHANAATPISHE M, KHAVASI E, et al. Experimental investigation of the effect of inlet Froude number on turbidity currents behavior over the obstacles[C]∥Conference ICDHP. [s.l.]: ICDHP, 2012: DOI: 10.13140/2.1.4214.6884. [16]PARI S A A, KASHEFIPOUR S M, GHOMESHI M. An experimental study to determine the obstacle height required for the control of subcritical and supercritical gravity currents[J]. European Journal of Environmental and Civil Engineering, 2016, 21(9): 1080-1092. [17]范家骅. 异重流运动的实验研究[J]. 水利学报, 1959, 5(3): 30-48. FAN Jiahua. Experimental studies on density currents[J]. Journal of Hydraulic Engineering, 1959, 5(3): 30-48. [18]贺治国, 林挺, 赵亮, 等. 异重流在层结与非层结水体中沿斜坡运动的实验研究[J]. 中国科学:技术科学, 2016, 46(6): 570-578. HE Zhiguo, LIN Ting, ZHAO Liang, et al. Experiments on gravity currents down a ramp in unstratified and linearly stratified salt water environments[J]. Sci Sin Tech, 2016, 46(6): 570-578. [19]张瑞瑾. 河流泥沙动力学[M]. 2版. 北京: 中国水利水电出版社, 2008. ZHANG Ruijin. River sediment dynamics[M]. 2nd ed. Beijing: China Water & Power Press, 2008. [20]BAINES P G. Mixing in flows down gentle slopes into stratified environments[J]. Journal of Fluid Mechanics, 2001, 443: 237-270. [21]SIMPSON J E. Gravity currents: In the environment and the laboratory[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1999. [22]DAI A. Experiments on gravity currents propagating on different bottom slopes[J]. Journal of Fluid Mechanics, 2013, 731: 117-141. [23]PARI S A A, KASHEFIPOUR S M, GHOMESHI M, et al. Effects of obstacle heights on controlling turbidity currents with different concentrations and discharges[J]. Journal of Food, Agriculture & Environment, 2010, 8 (2): 930-935. [24]BEGHIN P, HOPFINGER E J, BRITTER R E. Gravitational convection from instantaneous sources on inclined boundaries[J]. Journal of Fluid Mechanics, 1981, 107: 407-422. [25]BENJAMIN T B. Gravity currents and related phenomena[J]. Journal of Fluid Mechanics, 1968, 31(2): 209-248. |
[1] | 孙佳哲, 邹鹰. 基于深度学习的码头电子围栏识别应用[J]. 海洋工程装备与技术, 2025, 12(1): 87-93. |
[2] | 李金凤, 陈武光, 张正川, 徐用良, 李开盈, 尹俊连, 王德忠. 尾水管内气液两相流动测量[J]. 上海交通大学学报, 2024, 58(8): 1188-1200. |
[3] | 刘雅钰, 林颖典, 袁野平, 贺治国. 线性层结环境和浸没式植被对斜坡异重流运动的影响[J]. 上海交通大学学报, 2021, 55(4): 412-420. |
[4] | 韩东睿, 余俊杨, 袁野平, 贺治国, 王雨杭, 林颖典. 粗糙底床对持续入流式异重流掺混和湍流特性的影响[J]. 上海交通大学学报, 2021, 55(1): 77-87. |
[5] | 熊杰,袁野平,林颖典. 浸没及非浸没刚性短植被群对异重流运动特性的影响[J]. 上海交通大学学报, 2020, 54(3): 285-294. |
[6] | 张维凯,胡鹏. 异重流水卷吸经验式不确定性对层平均数学模型的影响[J]. 上海交通大学学报, 2020, 54(1): 35-42. |
[7] | 赵亮,张巍,贺治国,谈利明,蒋后硕. 层结环境中浮力羽流的质量输移过程[J]. 上海交通大学学报(自然版), 2019, 53(4): 473-479. |
[8] | 朱睿,李尚,陈子煜,刘锦生,鲍锋,刘志荣. 二维开缝圆柱环流动力特性[J]. 上海交通大学学报, 2019, 53(10): 1238-1248. |
[9] | 刘亦鹏1,王平阳1,蔺帅南1,赵先林2,杜朝辉1. 低温管路中Taylor气泡形成位置预测公式[J]. 上海交通大学学报(自然版), 2013, 47(10): 1509-1514. |
[10] | 刘亦鹏, 胡学羽, 陈佳洛, 王平阳, 杜朝辉. 圆形截面管路内PIV流场测量的直接校正方法[J]. 上海交通大学学报(自然版), 2013, 47(04): 525-532. |
[11] | 刘厚林, 杨东升, 谈明高, 王凯, 庄宿国, 杜辉. 双叶片离心泵内失速现象的三维PIV分析[J]. 上海交通大学学报(自然版), 2012, 46(05): 734-739. |
[12] | 葛冰, 臧述升, 郭培卿. 多孔式喷嘴加湿旋流扩散燃烧流场的实验研究[J]. 上海交通大学学报(自然版), 2012, 46(05): 661-665. |
[13] | 谢龙1, 靳思宇1, 2, 于建国1, 王玉璋1. 阀体后90°圆形弯管内部流场PIV分析[J]. 上海交通大学学报(自然版), 2011, 45(09): 1395-1399. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||