上海交通大学学报(自然版) ›› 2018, Vol. 52 ›› Issue (6): 729-742.doi: 10.16183/j.cnki.jsjtu.2018.06.015
李剑锋1,张兆晶1,张雷雨1,陶春静2,季润2,范金红1
通讯作者:
李剑峰(1964-),男,吉林省舒兰市人,教授,博士生导师,研究方向为机器人机构学和穿戴外骨骼技术.
电话(Tel.):010-67396565;E-mail:lijianfeng@bjut.edu.cn.
基金资助:
LI Jianfeng1,ZHANG Zhaojing1,ZHANG Leiyu1,TAO Chunjing2,JI Run2,FAN Jinhong1
摘要: 以人机运动相容性为关注点,对手部外骨骼设计的研究现状进行分析与综述.首先,结合人手解剖学结构与关节运动学属性的分析,简要介绍手部的主要运动学参考模型.其次,根据实现人机运动相容性的设计方法,将手部外骨骼归纳为人机关节轴线对齐、关节轴线自适应和柔顺性结构手套等3种主要类型,并扼要分析典型手部外骨骼的设计特点.最后,结合人机穿戴偏差、个体体征差异和人机关节运动属性差异等对人机运动相容性的影响,对手部外骨骼设计需要考虑的问题和后续研究进行了分析与论述.
中图分类号:
李剑锋1,张兆晶1,张雷雨1,陶春静2,季润2,范金红1. 手部外骨骼运动相容性设计综述[J]. 上海交通大学学报(自然版), 2018, 52(6): 729-742.
LI Jianfeng1,ZHANG Zhaojing1,ZHANG Leiyu1,TAO Chunjing2,JI Run2,FAN Jinhong1. Review of the Kinematic Compatibility Design of Hand Exoskeletons[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 729-742.
[1]DONNAN G A, FISHER M, MACLEOD M, et al. Stroke[J]. Lancet, 2008, 371(9624): 1612-1623. [2]乐趣, 屈云. 脑卒中后偏瘫侧手部运动功能康复技术进展[J]. 中国康复医学杂志, 2012, 27(11): 1084-1086. LE Qu, QU Yun. Technical progress of functional rehabilitation of stroke patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(11): 1084-1086. [3]SHIELDS B L, MAIN J, PETERSON S W, et al. An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities[J]. IEEE Transactions on Systems Man & Cybernetics Part A Systems & Humans A Publication of the IEEE Systems Man & Cybernetics Society, 1997, 27(5): 668-673. [4]TONG K Y, HO S K, PANG P M K, et al. An intention driven hand functions task training robotic system[C]∥International Conference of the IEEE Engineering in Medicine & Biology Society Conference. Buenos Aires: IEEE, 2010: 3406-3409. [5]NAKAGAWARA S, KAJIMOTO H, KAWAKAMI N, et al. An encounter-type multi-fingered master hand using circuitous joints[C]∥Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. Barcelona: IEEE, 2005: 2667-2672. [6]CEMPINI M, DE ROSSI S M M, LENZI T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation[C]∥Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on. Washington: IEEE, 2013: 6650414. [7]CEMPINI M, CORTESE M, VITIELLO N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes[J]. Mechatronics, IEEE/ASME Transactions on, 2015, 20(2): 705-716. [8]WANG Shuang, LI Jiting, ZHANG Yuru, et al. Active and passive control of an exoskeleton with cable transmission for hand rehabilitation[C]∥International Conference on Biomedical Engineering and Informatics. Tianjin: IEEE, 2009: 1-5. [9]WEGE A, ZIMMERMANN A. Electromyography sensor based control for a hand exoskeleton[C]∥IEEE International Conference on Robotics and Biomimetics. Australia: IEEE, 2008: 1470-1475. [10]ITO S, KAWASAKI H, ISHIGURE Y, et al. A design of fine motion assist equipment for disabled hand in robotic rehabilitation system[J]. Journal of the Franklin Institute, 2011, 348(1): 79-89. [11]TSOUPIKOVA D, STOYKOV N S, CORRIGAN M, et al. Virtual immersion for post-stroke hand rehabilitation therapy[J]. Annals of Biomedical Engineering, 2015, 43(2): 467-477. [12]SCHIELE A, VAN DER HELM F C T. Kinematic design to improve ergonomics in human machine interaction[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2006, 14(4): 456-469. [13]LI Jianfeng, ZHANG Ziqiang, TAO Chunjing, et al. Structure design of lower limb exoskeletons for gait training[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5): 878-887. [14]JARRASS N, MOREL G. Connecting a human limb to an exoskeleton[J]. Robotics, IEEE Transactions on, 2012, 28(3): 697-709. [15]MA Z, BEN-TZVI P. RML Glove—An exoskeleton glove mechanism with haptics feedback[J]. Mechatronics, IEEE/ASME Transactions on, 2015, 20(2): 641-652. [16]ZHOU M, PINHAS B T. Sensing and force-feedback exoskeleton (SAFE) robotic glove[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2015, 23(6): 992-1002. [17]IQBAL J, TSAGARAKIS N G, CALDWELL D G. A multi-DOF robotic exoskeleton interface for hand motion assistance[C]∥Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. Singapore: IEEE, 2011: 1575-1578. [18]GODFREY S B, HOLLEY R J, LUM P S. Evaluation of HEXORR tone assistance mode against spring assistance[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2015, 23(4): 610-617. [19]BROKAW E B, HOLLEY R J, LUM P S. Hand spring operated movement enhancer (HandSOME) device for hand rehabilitation after stroke[C]∥Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. Buenos Aires: IEEE, 2010: 5867-5870. [20]HEUSER A, KOURTEV H, WINTER S, et al. Telerehabilitation using the rutgers master II glove following carpal tunnel release surgery: proof-of-concept[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2007, 15(1): 43-49. [21]JONES C L, WANG F, MORRISON R, et al. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke[J]. Mechatronics, IEEE/ASME Transactions on, 2014, 19(1): 131-140. [22]柏树令. 系统解剖学[M]. 7版. 北京: 人民卫生出版社, 2009. BO Shuling. Systematic anatomy [M]. 7th ed. Beijing: People’s Medical Publishing House, 2009. [23]WU G, VAN DER HELM F C T, VEEGER H E J D J, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II. Shoulder, elbow, wrist and hand[J]. Journal of Biomechanics, 2005, 38(5): 981-992. [24]LI K, CHEN I M, YEO S H, et al. Development of finger-motion capturing device based on optical linear encoder[J]. Journal of Rehabilitation Research & Development, 2011, 48(1): 69-82. [25]SANTOS V J, VALERO-CUEVAS F J. Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb[J]. Biomedical Engineering, IEEE Transactions on, 2006, 53(2): 155-163. [26]KAWASAKI H, ITO S, ISHIGURE Y, et al. Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control[C] ∥Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. Australia: IEEE, 2007: 234-240. [27]FONTANA M, FABIO S, MARCHESCHI S, et al. Haptic hand exoskeleton for precision grasp simulation[J]. Journal of Mechanisms & Robotics, 2013, 5(4): 327-335. [28]FANG H, XIE Z, LIU H. An exoskeleton master hand for controlling DLR/HIT hand[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE Press, 2009: 3703-3708. [29]FANG H, XIE Z, LIU H, et al. An exoskeleton force feedback master finger distinguishing contact and non-contact mode[C]∥Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on. Singapore: IEEE, 2009: 1059-1064. [30]BATTEZZATO A. Towards an underactuated finger exoskeleton: An optimization process of a two-phalange device based on kinetostatic analysis[J]. Mechanism and Machine Theory, 2014, 78(8): 116-130. [31]LELIEVELD M J, MAENO T, TOMIYAMA T. Design and development of two concepts for a 4 DOF portable haptic interface with active and passive multi-point force feedback for the index finger[C]∥ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Philadelphia: American Society of Mechanical Engineers, 2006: 547-556. [32]FU Y, WANG P, WANG S, et al. Design and development of a portable exoskeleton based CPM machine for rehabilitation of hand injuries[C]∥Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. Sanya: IEEE, 2007: 1476-1481. [33]BURTON T M W, VAIDYANATHAN R, BURGESS S C, et al. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton[C]∥IEEE International Conference on Rehabilitation Robotics. IEEE International Conference Rehabil Robot. Zurich: IEEE, 2011: 1-7. [34]郭盛, 方跃法, 岳聪. 基于螺旋理论的单闭环多自由度过约束机构综合[J]. 机械工程学报, 2009, 11: 38-45. GUO Sheng, FANG Yuefa, YUE Cong. Structure synthesis of single closed-loop multi-degree of freedom of over-constrained mechanism based on screw theory[J]. Journal of Mechanical Engineering, 2009, 11: 38-45. [35]WRIGHT A K, STANISIC M M. Kinematic mapping between the EXOS handmaster exoskeleton and the Utah/MIT dextrous hand[C]∥IEEE International Conference on Systems Engineering. Skokie: IEEE, 1990: 101-104. [36]CHOI B H, CHOI H R. A semi-direct drive hand exoskeleton using ultrasonic motor[C]∥IEEE International Workshop on Robot and Human Interaction. Roman: IEEE, 1999: 285-290. [37]CHOI B H, CHOI H R. SKK hand master-hand exoskeleton driven by ultrasonic motors[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu: IEEE, 2000: 1131-1136. [38]WEGE A, KONDAK K, HOMMEL G. Mechanical design and motion control of a hand exoskeleton for rehabilitation[C]∥Mechatronics and Automation, 2005 IEEE International Conference. Niagara Fails: IEEE, 2005: 155-159. [39]SUN Z, BAO G, YANG Q, et al. Design of a novel force feedback data-glove based on pneumatic artificial muscles[C]∥IEEE International Conference on Mechatronics and Automation. Orlando: IEEE, 2006: 968-972. [40]LI J, ZHENG R, ZHANG Y, et al. iHandRehab: An interactive hand exoskeleton for active and passive rehabilitation[C]∥IEEE International Conference on Rehabilitation Robotics. Zurich: IEEE, 2011: 1-6. [41]ZHENG R, LI J. Kinematics and workspace analysis of an exoskeleton for thumb and index finger rehabilitation[C]∥IEEE International Conference on Robotics and Biomimetics. Tianjin: IEEE, 2010: 80-84. [42]TANG T, ZHANG D, XIE T, et al. An exoskeleton system for hand rehabilitation driven by shape memory alloy[C]∥IEEE International Conference on Robotics and Biomimetics. Shenzhen: IEEE, 2013: 756-761. [43]MADDEN K E, DESHPANDE A D. On integration of additive manufacturing during the design and development of a rehabilitation robot: a case study[J]. Journal of Mechanical Design, 2015, 137(11): 111417. [44]WANG Ju, LI Jiting, ZHANG Yuru, et al. Design of an Exoskeleton for Index Finger Rehabilitation[C]∥31st Annual International Conference of the IEEE EMBS. Minnesota: IEEE, 2009: 5957-5960. [45]FU Y, ZHANG Q, ZHANG F, et al. Design and development of a hand rehabilitation robot for patient-cooperative therapy following stroke[C]∥Mechatronics and Automation (ICMA), 2011 International Conference on. Chengdu: IEEE, 2011: 112-117. [46]POLOTTO A, MODULO F, FLUMIAN F, et al. Index finger rehabilitation/assistive device[C]∥Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. Australia: IEEE, 2012: 1518-1523. [47]CHIRI A, VITIELLO N, GIOVACCHINI F, et al. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation[J]. Mechatronics, IEEE/ASME Transactions on, 2012, 17(5): 884-894. [48]CHIRI A, GIOVACCHINI F, VITIELLO N, et al. HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand[C]∥Intelligent Robots and Systems. St. Louis: IEEE, 2009: 1106-1111. [49]CONNELLY L, JIA Y, TORO M L, et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, IEEE, 2010, 18(5): 551-559. [50]YAP H K, LIM J H, NASRALLAH F, et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness[C]∥2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4967-4972. [51]POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training[C]∥IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 2913-2919. [52]IN H K, CHO K J, KIM K R, et al. Jointless structure and under-actuation mechanism for compact hand exoskeleton[C]∥Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on. Zurich: IEEE, 2011: 1-6. [53]LEE S, LANDERS K, PARK H S. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2014, 22(4): 886-898. [54]ARATA J, OHMOTO K, GASSERT R, et al. A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism[C]∥Robotics and Automation (ICRA), 2013 IEEE International Conference on. Karlsruhe: IEEE, 2013: 3902-3907. [55]NYCZ C J, BUTZER T, LAMBERCY O, et al. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton[J]. IEEE Robotics & Automation Letters, 2016, 1(2): 976-983. [56]杨建宇, 谢华龙, 史家顺. 线驱无关节手指外骨骼的运动耦合方法[J]. 机器人, 2016(1): 27-32. YANG Jianyu, XIE Hualong, SHI Jiashun. A motion coupling method for tendon-driven jointless finger exoskeleton[J]. Robot, 2016(1): 27-32. [57]杨正东, 王人成. 截瘫助行机器人人机运动相容性仿真分析[C]∥北京国际康复论坛. 北京: 中国康复研究中心, 2014. YANG Zhengdong, WANG Rencheng. Simulation analysis of human-machine kinematic coordination of walk assisting robot[C]∥Beijing International Forum on Rehabilitation. Beijing: China Rehabilitation Research Center, 2014. [58]严华, 杨灿军, 陈杰. 上肢运动康复外骨骼肩关节优化设计与系统应用[J]. 浙江大学学报(工学版), 2014(6): 1086-1094. YAN Hua, YANG Canjun, CHEN Jie. Optimal design on shoulder joint of upper limb exoskeleton robot for motor rehabilitation and system application[J]. Journal of Zhejiang University (Engineering Science), 2014(6): 1086-1094. |
[1] | 葛世程, 郭着雨, 梁熙, 莫宗来, 李军. 摆动柔顺式吊钩结构参数的多目标优化[J]. 上海交通大学学报, 2021, 55(11): 1467-1475. |
[2] | 王伟, 李奥特, 于军力. 基于目标流量拟合的微型燃烧室流量分配设计方法[J]. 上海交通大学学报, 2020, 54(9): 1000-1006. |
[3] | 赵兵, 陈务军, 胡建辉, 邱振宇, 宋浩, 蔡晶. 基于平面裁切的三角形乙烯-四氟乙烯气枕成形试验及数值模拟[J]. 上海交通大学学报, 2016, 50(03): 377-383. |
[4] | 白旭. 基于下潜超深风险的潜艇耐压船体结构设计方法[J]. 上海交通大学学报(自然版), 2016, 50(01): 110-114. |
[5] | 蒋世全, 李峰飞, 刘怡君, 周建良, 李迅科, 谢彬. 从浅海走向深海的挑战与钻井设计技术对策[J]. 海洋工程装备与技术, 2015, 2(6): 361-372. |
[6] | 邹才均,张卫平,柯希俊,邵云立,张伟柴双双,胡楠,叶以楠,陈文元. 仿昆扑翼微飞行器中高效传动铰链的研究[J]. 上海交通大学学报(自然版), 2014, 48(03): 439-444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||