上海交通大学学报 ›› 2018, Vol. 52 ›› Issue (1): 83-89.doi: 10.16183/j.cnki.jsjtu.2018.01.013
王月,张树生,何卫平,白晓亮
发布日期:
2018-01-01
基金资助:
WANG Yue,ZHANG Shusheng,HE Weiping,BAI Xiaoliang
Published:
2018-01-01
摘要: 为了克服物体表面缺少足够的纹理特征且算法搜索空间太大的缺陷,提出了一种基于模型与自然特征点相融合的三维注册追踪方法.采用保持旋转和尺度不变性的线性并行多模态(LINE-MOD)模板匹配方法快速识别目标物体、获取与当前视角接近的参考视图而完成相机位姿的粗略估计,并缩小算法的搜索空间;采用基于自然特征点的方法完成相机位姿的精确计算;为了避免因特征点较少而引起的位姿抖动或扰动,引入了有效的非迭代透视n点问题(RPnP)算法以提高注册追踪的精度和速度.结果表明,所提出的注册追踪方法能够进行快速三维注册,具有良好的实时性和鲁棒性,其运算速度可达30帧/s.
中图分类号:
王月,张树生,何卫平,白晓亮. 基于模型的增强现实无标识三维注册追踪方法[J]. 上海交通大学学报, 2018, 52(1): 83-89.
WANG Yue,ZHANG Shusheng,HE Weiping,BAI Xiaoliang. Model-Based Marker-Less 3D Tracking Approach for Augmented Reality[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 83-89.
[1]WESTERFIELD G, MITROVIC A, BILLINGHURST M. Intelligent augmented reality training for motherboard assembly[J]. International Journal of Artificial Intelligence in Education, 2015, 25(1): 157-172. [2]FIORENTION M, UVA A E, GATTULLO M, et al. Augmented reality on large screen for interactive maintenance instructions[J]. Computers in Industry, 2014, 65(2): 270-278. [3]CRIVELLARO A, RAD M, VERDIE Y, et al. A novel representation of parts for accurate 3D object detection and tracking in monocular images[C]∥Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 4391-4399. [4]MOTTAGHI R, YU X, SILVIO S. A coarse-to-fine model for 3D pose estimation and sub-category recognition [C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015, 418-426. [5]ENGEL J, THOMAS S, DANIEL C. LSD-SLAM: Large-scale direct monocular SLAM[C]∥European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014: 834-849. [6]PAUWELS K, RUBIO L, DIAZ J, et al. Real-time model-based rigid object pose estimation and tracking combining dense and sparse visual cues[C]∥Conference on Computer Vision and Pattern Recognition (CVPR). Portland, USA: IEEE, 2013: 2347-2354. [7]KYRIAZIS N, ANTONIS A. Scalable 3D tracking of multiple interacting objects[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE, 2014, 3430-3437. [8]PAYET N, SINISA T. From contours to 3D object detection and pose estimation[C]∥International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011: 983-990. [9]RADKOWSKI R. Object tracking with a range camera for augmented reality assembly assistance[J]. Journal of Computing and Information Science in Engineering, 2016, 16(1): 011004. [10]GARRETT T, DEBERNARDIS S, OLIVER J, et al. Poisson mesh reconstruction for accurate object tracking with low-fidelity point clouds[J]. Journal of Computing and Information Science in Engineering, 2017, 17(1): 011003. [11]WANG G, WANG B, ZHONG F, et al. Global optimal searching for textureless 3D object tracking[J]. The Visual Computer, 2015, 31(6-8): 979-988. [12]NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]∥10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Basel, Switzerland: IEEE, 2011: 127-136. [13]HINTERSTOISSER S, CAGNIART C, ILIC S, et al. Gradient response maps for real-time detection of textureless objects[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(5): 876-888. [14]RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]∥International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011: 2564-2571. [15]KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]∥Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, USA: IEEE, 2010, 49-56. [16]周凯汀, 郑力新. 基于改进 ORB 特征的多姿态人脸识别[J]. 计算机辅助设计与图形学学报, 2015, 27(2): 287-295. ZHOU Kaiting, ZHENG Lixin. Multi-pose face recognization based on improved ORB features[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(2): 287-295. [17]LU C P, HAGER G D, MJOLSNESS E. Fast and globally convergent pose estimation from video images[J]. Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 610-622. [18]LI S Q, XU C, XIE, M. A robust O(n) solution to the perspective-n-point problem[J]. Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1444-1450. [19]ABAWI D F, JOACHIM B, RALF D. Accuracy in optical tracking with fiducial markers: An accuracy function for ARToolKit[C]∥Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality. Arlington, USA: IEEE, 2004: 260-261. |
[1] | 白雄飞, 龚水成, 李雪松, 许博, 杨晓力, 王明彦. 基于泊松融合数据增强的焊缝金相组织缺陷分类研究[J]. 上海交通大学学报, 2023, 57(10): 1316-1328. |
[2] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[3] | 叶仙,胡洁,田畔,戚进,车大钿,丁颖. 基于精细复合多尺度熵与支持向量机的睡眠分期[J]. 上海交通大学学报(自然版), 2019, 53(3): 321-326. |
[4] | 刘宇,江宏毅,王仕亮,王伊冰,陈燕苹. 基于加速度时域特征的实时人体行为模式识别[J]. 上海交通大学学报(自然版), 2015, 49(02): 169-172. |
[5] | 王佳婧1,2,张树生1,何卫平1. 基于多信息融合的失效DPM码识别[J]. 上海交通大学学报(自然版), 2014, 48(12): 1675-1680. |
[6] | 赵洪伟,谢永芳,曹斌芳,蒋朝辉. 基于Gabor小波和LPP的浮选过程泡沫纹理特征提取及应用[J]. 上海交通大学学报(自然版), 2014, 48(07): 942-947. |
[7] | 贾松敏1,王爽1,王丽佳1,2,李秀智1. CTF定位策略下基于多特征的智能机器人目标跟踪[J]. 上海交通大学学报(自然版), 2014, 48(07): 1039-1045. |
[8] | 王佳婧1,2,张树生1,何卫平1. 金属零件上二维条码高光区域的恢复[J]. 上海交通大学学报(自然版), 2013, 47(12): 1836-1841. |
[9] | 方挺,董冲,胡兴柳,王彦. 航拍图像中绝缘子串的轮廓提取和故障检测[J]. 上海交通大学学报(自然版), 2013, 47(12): 1818-1822. |
[10] | 刘洪涛,梁振宁,胡文,莫锦秋,王石刚. 基于局部特征点检测与匹配的微悬臂梁变形受力测量方法[J]. 上海交通大学学报(自然版), 2013, 47(12): 1842-1847. |
[11] | 王晓端1,刘书炘2,刘满华1. 基于模型分析的指纹奇异点检测[J]. 上海交通大学学报(自然版), 2013, 47(08): 1222-1226. |
[12] | 胡文1, 刘洪涛1, 胡春2, 范明霞3, 莫锦秋1, 王石刚1. 基于伪Zernike矩不变量分析的视觉测力[J]. 上海交通大学学报(自然版), 2013, 47(04): 589-593. |
[13] | 刘洪涛, 蒋如意, 胡文, 莫锦秋, 王石刚. 基于路面垂直轮廓B样条拟合的车辆运动估计偏移抑制[J]. 上海交通大学学报(自然版), 2013, 47(04): 630-634. |
[14] | 李斌, 叶昊. 基于仿射几何不变量的鲁棒图像配准算法[J]. 上海交通大学学报(自然版), 2012, 46(12): 1881-1884. |
[15] | 吕复强1, 王慧1, 刘泓2. 基于改进混合高斯模型的交通流背景检测算法[J]. 上海交通大学学报(自然版), 2012, 46(12): 1920-1925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||