上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (04): 490-495.
崔雨辰1,高忠权1,段浩1,张聪1,吴筱敏1,2
收稿日期:
2015-03-03
出版日期:
2016-04-28
发布日期:
2016-04-28
基金资助:
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2
Received:
2015-03-03
Online:
2016-04-28
Published:
2016-04-28
摘要: 摘要: 为研究不同频率高频交流电场对预混稀燃火焰的影响,对常温、常压下定容燃烧弹中过量空气系数为1.6时的甲烷/空气火焰的传播和燃烧特性进行了研究.结果表明:高频交流电场作用下,火焰均在水平方向被拉伸,当加载交流电压有效值一定时,交流电频率越高,火焰在水平方向的拉伸越剧烈.与未加载电压相比,当交流电压有效值u=5 kV,交流电频率f为5、7.5、10、12.5和15 kHz时,平均火焰传播速度分别提高43.10%、53.45%、63.79%、74.14%和84.48%,相对燃烧压力增大率的最大值分别为0.15、0.21、0.27、0.36和0.50.由此得出,高频交流电场对火焰燃烧有一定的促进作用,且交流电频率越高,促进作用越明显.
中图分类号:
崔雨辰1,高忠权1,段浩1,张聪1,吴筱敏1,2. 不同频率高频交流电对球形传播火焰的影响[J]. 上海交通大学学报(自然版), 2016, 50(04): 490-495.
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2. Effects of HighFrequency Alternating Electric Fields of Different Frequencies on Spherical Propagation Flame[J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 490-495.
[1]KUHL J, JOVICIC G, ZIGAN L, et al. Fundamental investigation of the influence mechanism of an electric field on flames by simultaneous PIV and PLIF measurements[C]// Proceedings of the European Combustion Meeting (ECM). Cardiff: Combustion Institute Cardiff Section, 2011. [2]BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [3]BELHI M, DOMONGO P, VERVISCH P. Effect of electric field on flame stability[C]//Proceedings of the European Combustion Meeting. Vienna:Research GATE, 2009: 16. [4]KIM M K, CHUNG S H, KIM H H. Effect of AC electric fields on the stabilization of premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2010, 33(1): 11371144. [5]MEMDOUH B, PASCALE D, PIERRE V. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [6]GANGULY B N. Hydrocarbon combustion enhancement by applied electric field and plasma kinetics[J]. Plasma Physics and Controlled Fusion, 2007, 49(12): 239246. [7]VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science Technology, 2008, 22(2): 312319. [8]WISMAN D, MARCUM S, GANGULY B. Electrical control of the thermodiffusive instability in premixed propaneair flames[J]. Combustion and Flame, 2007, 151(4): 639648. [9]VAN D B J, KONNOV A, VERHASSELT A, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 12371244. [10]VOLKOV E, SEPMAN A, KOMILOV V, et al. Towards the mechanism of DC electric field effect on flat premixed flames[C]//Proceedings of the European Combustion Meeting. Vienna: Research GATE, 2009:1417. [11]SAKHRIEH A, LINS G, DINKELACKER F, et al. The influence of pressure on the control of premixed turbulent flames using an electric fields[J]. Combustion and Flame, 2005, 143(3): 313322. [12]VEGA E V, SHIN S S, LEE K Y. No emission of oxygenenriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4): 512519. [13]PARK D G, CHOI B C, CHA M S, et al. Soot reduction under DC electric fields in counterflow nonpremixed laminar ethylene flames[J]. Combustion Science and Technology, 2014, 186(4/5): 644656. [14]ALTENDORFNER F, SAKHRIEH A, BEYRAU F, et al. Electric field effects on emissions and flame stability with optimized electric field geometry[C]//Proceedings of the European Combustion Meeting(ECM). Chania:Combustion Institute Greek Section,2007. [15]VERHASSELT A M H H. Experimental evaluation of an electric field as actuator in thermoacoustic control[D]. Eindhoven, Netherlands:Eindhoven University of Technology, 2007. [16]WANG Y, NATHAN G J, ALWAHABI Z, et al. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames[J]. Combustion and Flame, 2010, 157(7): 13081315. [17]KIM M K, CHUNG S H, KIM H H. Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency: Biionic wind effect[J]. Combustion and Flame, 2012, 159(3): 11511159. [18]WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J]. Proceedings of the Combustion Institute, 2007, 31(1): 963970. [19]WON S H, RYU S K, KIM M K, et al. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets[J]. Combustion and Flame,2008, 152(4): 496506. [20]ZHANG Y, WU Y X, YANG H R, et al. Effect of highfrequency alternating electric fields on the behavior and nitric oxide emission of laminar nonpremixed flames[J]. Fuel, 2013, 109(7): 350355. |
[1] | 符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138. |
[2] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[3] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[4] | 辛建建, 方田, 石伏龙. 三维菱形液舱剧烈晃荡和共振频率数值研究[J]. 上海交通大学学报, 2021, 55(2): 161-169. |
[5] | 郑昌隆, 丁晓红, 沈洪, 赵利娟. 基于自适应成长法的舵面结构动力学拓扑优化设计方法研究[J]. 空天防御, 2021, 4(2): 7-. |
[6] | 许晓晨, 李翔, 黄忠, 具德浩, 吕兴才, 黄震. 基于MATLAB图像处理的大缸径定容弹中甲烷/空气射流火焰传播特性[J]. 上海交通大学学报, 2020, 54(5): 490-498. |
[7] | 范兴明,贾二炬,高琳琳,张伟杰,焦自权,张鑫. 基于目标参数最优的磁耦合谐振式无线能量传输系统频率特性分析及仿真验证[J]. 上海交通大学学报, 2020, 54(4): 430-440. |
[8] | 姜 伟. 深水钻井喷射下导管过程中钻柱扭振规律研究及其应用[J]. 海洋工程装备与技术, 2019, 6(1): 450-456. |
[9] | 赵征, 李晓龙. 基于预报补偿最速跟踪微分器的视线角加速度滤波算法研究[J]. 空天防御, 2018, 1(2): 59-63. |
[10] | 邵昊舒,蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报(自然版), 2018, 52(10): 1166-1177. |
[11] | 金胜赫1,张化光1,玄成哲2,周建国1. 电网电压参数跳变时三相并网逆变器的同步方法[J]. 上海交通大学学报(自然版), 2017, 51(5): 585-. |
[12] | 喻西崇, 王春升, 李博, 程兵, 李焱, 王清. 我国南海深水油气田水下回接管道清管策略研究[J]. 海洋工程装备与技术, 2017, 4(4): 199-204. |
[13] | 王伊卿a,张腾a,匡新斌a,卢秉恒a,洪军a,徐明龙b. NiTi-Al金属基复合材料梁固有频率调节特性理论与实验研究[J]. 上海交通大学学报(自然版), 2015, 49(09): 1300-1305. |
[14] | 屈健,王谦,何志霞,韩新月,胡自成,刘涛,王超. 矩形微通道内液滴产生和运动特性实验研究[J]. 上海交通大学学报(自然版), 2015, 49(01): 86-90. |
[15] | 成德a,姚振强a,b,薛亚波a,沈洪a,b. 间隙环流作用下的转子动力学性能分析[J]. 上海交通大学学报(自然版), 2014, 48(02): 271-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||