上海交通大学学报(自然版) ›› 2016, Vol. 50 ›› Issue (04): 490-495.
崔雨辰1,高忠权1,段浩1,张聪1,吴筱敏1,2
收稿日期:
2015-03-03
出版日期:
2016-04-28
发布日期:
2016-04-28
基金资助:
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2
Received:
2015-03-03
Online:
2016-04-28
Published:
2016-04-28
摘要: 摘要: 为研究不同频率高频交流电场对预混稀燃火焰的影响,对常温、常压下定容燃烧弹中过量空气系数为1.6时的甲烷/空气火焰的传播和燃烧特性进行了研究.结果表明:高频交流电场作用下,火焰均在水平方向被拉伸,当加载交流电压有效值一定时,交流电频率越高,火焰在水平方向的拉伸越剧烈.与未加载电压相比,当交流电压有效值u=5 kV,交流电频率f为5、7.5、10、12.5和15 kHz时,平均火焰传播速度分别提高43.10%、53.45%、63.79%、74.14%和84.48%,相对燃烧压力增大率的最大值分别为0.15、0.21、0.27、0.36和0.50.由此得出,高频交流电场对火焰燃烧有一定的促进作用,且交流电频率越高,促进作用越明显.
中图分类号:
崔雨辰1,高忠权1,段浩1,张聪1,吴筱敏1,2. 不同频率高频交流电对球形传播火焰的影响[J]. 上海交通大学学报(自然版), 2016, 50(04): 490-495.
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2. Effects of HighFrequency Alternating Electric Fields of Different Frequencies on Spherical Propagation Flame[J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 490-495.
[1]KUHL J, JOVICIC G, ZIGAN L, et al. Fundamental investigation of the influence mechanism of an electric field on flames by simultaneous PIV and PLIF measurements[C]// Proceedings of the European Combustion Meeting (ECM). Cardiff: Combustion Institute Cardiff Section, 2011. [2]BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [3]BELHI M, DOMONGO P, VERVISCH P. Effect of electric field on flame stability[C]//Proceedings of the European Combustion Meeting. Vienna:Research GATE, 2009: 16. [4]KIM M K, CHUNG S H, KIM H H. Effect of AC electric fields on the stabilization of premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2010, 33(1): 11371144. [5]MEMDOUH B, PASCALE D, PIERRE V. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [6]GANGULY B N. Hydrocarbon combustion enhancement by applied electric field and plasma kinetics[J]. Plasma Physics and Controlled Fusion, 2007, 49(12): 239246. [7]VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science Technology, 2008, 22(2): 312319. [8]WISMAN D, MARCUM S, GANGULY B. Electrical control of the thermodiffusive instability in premixed propaneair flames[J]. Combustion and Flame, 2007, 151(4): 639648. [9]VAN D B J, KONNOV A, VERHASSELT A, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 12371244. [10]VOLKOV E, SEPMAN A, KOMILOV V, et al. Towards the mechanism of DC electric field effect on flat premixed flames[C]//Proceedings of the European Combustion Meeting. Vienna: Research GATE, 2009:1417. [11]SAKHRIEH A, LINS G, DINKELACKER F, et al. The influence of pressure on the control of premixed turbulent flames using an electric fields[J]. Combustion and Flame, 2005, 143(3): 313322. [12]VEGA E V, SHIN S S, LEE K Y. No emission of oxygenenriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4): 512519. [13]PARK D G, CHOI B C, CHA M S, et al. Soot reduction under DC electric fields in counterflow nonpremixed laminar ethylene flames[J]. Combustion Science and Technology, 2014, 186(4/5): 644656. [14]ALTENDORFNER F, SAKHRIEH A, BEYRAU F, et al. Electric field effects on emissions and flame stability with optimized electric field geometry[C]//Proceedings of the European Combustion Meeting(ECM). Chania:Combustion Institute Greek Section,2007. [15]VERHASSELT A M H H. Experimental evaluation of an electric field as actuator in thermoacoustic control[D]. Eindhoven, Netherlands:Eindhoven University of Technology, 2007. [16]WANG Y, NATHAN G J, ALWAHABI Z, et al. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames[J]. Combustion and Flame, 2010, 157(7): 13081315. [17]KIM M K, CHUNG S H, KIM H H. Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency: Biionic wind effect[J]. Combustion and Flame, 2012, 159(3): 11511159. [18]WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J]. Proceedings of the Combustion Institute, 2007, 31(1): 963970. [19]WON S H, RYU S K, KIM M K, et al. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets[J]. Combustion and Flame,2008, 152(4): 496506. [20]ZHANG Y, WU Y X, YANG H R, et al. Effect of highfrequency alternating electric fields on the behavior and nitric oxide emission of laminar nonpremixed flames[J]. Fuel, 2013, 109(7): 350355. |
[1] | 李鸿鑫, 钟祖浩, 卢艺, 文云峰. 考虑惯量安全需求的风电场控制参数优化方法[J]. 上海交通大学学报, 2025, 59(3): 323-332. |
[2] | . 基于基尼不纯度结构优化物理引导神经网络的薄膜型声学超材料传声损失预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 613-624. |
[3] | 朱兰, 张学涵, 唐陇军, 仇念航, 田英杰. 计及紧急可中断负荷的电能、惯性与一次调频联合出清模型[J]. 上海交通大学学报, 2025, 59(1): 16-27. |
[4] | 刘贤权1, 姜伟2. 深水钻井隔水导管纵向振动特性研究及其应用[J]. 海洋工程装备与技术, 2025, 12(1): 100-105. |
[5] | GANJIKUNTA Ganesh Kumar, MOHAMMED Mahaboob Basha, SIBGHATULLAH Inayatullah Khan. 利用分布式算法设计高能效FIR滤波器[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1023-1027. |
[6] | 吴振龙, 刘艳红, 薛亚丽, 李东海, CHEN Yangquan. 基于预期动态方程的含高比例可再生能源孤岛运行微电网负荷频率控制[J]. 上海交通大学学报, 2024, 58(6): 954-964. |
[7] | 周毅, 周良才, 史迪, 赵小英, 闪鑫. 基于安全深度强化学习的电网有功频率协同优化控制[J]. 上海交通大学学报, 2024, 58(5): 682-692. |
[8] | MAHENDRAN Krishnakumar, GAYATHRI Rajaraman. 利用频率选择表面改善多波段三角形微带贴片天线的性能[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 316-321. |
[9] | 张宇, 张琛, 鲍颜红, 吴峰, 蔡旭. 电网短路故障下风电场内跟-构网电源瞬时频率交互影响机理[J]. 上海交通大学学报, 2024, 58(12): 1903-1914. |
[10] | 陆文安, 朱清晓, 李兆伟, 刘辉, 余一平. 基于卷积神经网络的新型电力系统频率特性预测方法[J]. 上海交通大学学报, 2024, 58(10): 1500-1512. |
[11] | 刘新宇, 王森, 曾龙, 原绍恒, 郝正航, 逯芯妍. 双馈风电场抑制电网低频振荡的自适应附加控制策略[J]. 上海交通大学学报, 2023, 57(9): 1156-1164. |
[12] | 张铭昊, 张文旭, 陆满君. 一种随机相位多频点循环叠加梳状谱干扰波形设计[J]. 空天防御, 2023, 6(4): 74-79. |
[13] | 唐震, 郝丽花, 冯静. 局部频率测量数据驱动的电力系统功率缺额在线评估方法[J]. 上海交通大学学报, 2023, 57(4): 403-411. |
[14] | 范宏, 王兰坤, 邢梦晴, 田书欣, 于伟南. 考虑频率稳定约束的电-氢互补多楼宇协调优化调度[J]. 上海交通大学学报, 2023, 57(12): 1559-1570. |
[15] | 王亚伦, 周涛, 陈中, 王毅, 权浩. 基于堆叠式降噪自动编码器和深度神经网络的风电调频逐步惯性智能控制[J]. 上海交通大学学报, 2023, 57(11): 1477-1491. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||