上海交通大学学报(自然版) ›› 2015, Vol. 49 ›› Issue (06): 868-875.

• 自动化技术、计算机技术 • 上一篇    下一篇

基于局部邻域标准化策略的多工况过程故障检测

郭红杰1,徐春玲2,侍洪波1   

  1. (1.华东理工大学 化工过程先进控制和优化技术教育部重点实验室,上海 200237;2.上海市机械工业学校,上海 200237)
  • 收稿日期:2015-01-14
  • 基金资助:

    国家科学自然基金资助项目(61374140)

Multimode Process Monitoring Based on Local Neighborhood Standardization Strategy

GUO Hongjie1,XU Chunling2,SHI Hongbo1   

  1. (1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, China;2. Shanghai Machinery Industry  School, Shanghai 200237, China)
  • Received:2015-01-14

摘要:

摘要:  为满足实际工业过程中的生产需求,复杂的化工过程往往会包含多种运行模态,而且过程数据不再单一地服从高斯分布或非高斯分布.过程数据的多工况分布特性以及同一工况下数据分布的不确定性使得传统的多元统计方法无法得到满意结果.针对复杂化工过程中多工况以及复杂数据分布的问题,提出一种基于局部邻域标准化策略(Local Neighborhood Standardization, LNS)的故障检测方法.首先,运用局部邻域标准化策略对历史数据集进行预处理,并充分考虑到邻域密度,再通过局部密度因子(Local Density Factor, LDF)构造监控统计量,进而对工业过程数据进行在线故障检测,最后通过数值例子和Tennessee Eastman(TE)过程验证本文方法的有效性.

关键词: 多工况过程监控, 局部密度因子, 局部邻域标准化

Abstract:

Abstract: Complex chemical processes often have multiple operating modes to meet the changes of production condition. The actual industrial processes often contain multiple operating modes and the process data is no longer solely Gaussian or nonGaussian distribution.The multimode characteristics and the uncertainty of data distribution within one single mode make the conventional multivariate statistical process monitoring methods unsuitable for fault detection.To solve the problem of multiple operating modes and complex data distribution, this paper proposed a novel multimode data processing method called local neighborhood standardization (LNS) and local density factor. The LNS was used in data preprocessing and the local density factor was used as a monitoring statistic value. The validity and effectiveness of the proposed method were illustrated through a numerical example and the Tennessee Eastman process.

Key words: multimode process monitoring, local density factor, local neighborhood standardization

中图分类号: