上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (12): 1688-1693.
雷静桃,俞煌颖
收稿日期:
2014-02-28
出版日期:
2014-12-30
发布日期:
2014-12-30
基金资助:
国家自然科学基金资助项目(51375289),上海市自然科学基金资助项目(13ZR1415500),上海市教育委员会科研创新项目(13YZ020)
LEI Jingtao,YU Huangying
Received:
2014-02-28
Online:
2014-12-30
Published:
2014-12-30
摘要:
摘要: 基于四足生物动态步行时其柔性机体辅助腿机构的运动机理,设计了一种由气动人工肌肉、仿生脊柱、前机体和后机体组成的四足机器人仿生柔性机体.采用几何法分析仿生柔性机体运动学,建立四足机器人转向时仿生柔性机体弯曲角与气动人工肌肉长度变化间的关系,通过控制气动人工肌肉长度以控制机体弯曲.基于浮动坐标法和动量矩定理进行仿生柔性机体刚柔耦合动力学建模,对比分析了不同机体刚度下机体弯曲所需气动人工肌肉驱动力.设计仿生柔性机体弯曲控制实验系统,采用PID控制算法进行机体弯曲实验分析.四足机器人的仿生柔性机体分析,为提高其非结构化环境机动性奠定了基础.
中图分类号:
雷静桃,俞煌颖. 四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析[J]. 上海交通大学学报(自然版), 2014, 48(12): 1688-1693.
LEI Jingtao,YU Huangying. Dynamics Analysis of Bionic Flexible Body Driven by Pneumatic Artificial Muscle for Quadruped Robot[J]. Journal of Shanghai Jiaotong University, 2014, 48(12): 1688-1693.
[1]LIU Cheng, ZHANG Xiuli, LI Dongdong, et al. A flexiblewaist quadruped robot imitating infant crawl[C]∥Advances in Reconfigurable Mechanisms and Robots. London: Springer Press, 2012: 455463.[2]Park SeHoon, Kim DongSik, Lee YunJung. Discontinuous spinning gait of a quadruped walking robot with waistjoint[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE Press, 2005: 27442749.[3]Bidgoly H J, Vafael A, Sadeghi A, et al. Learning approach to study effect of flexible spine on running behavior of a quadruped robot[C]∥ International Conference on Climbing and Walking Robots (CLAWAR). Hackensack, NJ: World Scientific Press, 2010: 11951201.[4]Iwami T, Miyawaki K, Ishikawa Y, et al. Model simulation of novel spine for the motion stress analysis with muscle stimulation[C]∥ International Symposium on MicroNanoMechatronics and Human Science. Piscataway, NJ: IEEE Press, 2008: 435440.[5]Boisvert J, Cheriet F, Pennec X,et al. Geometric variability of the scoliotic spine using statistics on articulated shape models[J]. IEEE Transactions on Medical Imaging, 2008, 27(4): 557568.[6]戴振东. 陆上杆机构运动仿生的现状、关键技术及未来发展[J]. 南京航空航天大学学报, 2012, 44(5):621627.DAI Zhendong. Biomimetics of legged locomotion on unstructured multiBar compound: present situation, key technology and future development[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5): 621627.[7]McEwen M L, Springer J E. Quantification of locomotor recovery following spinal cord contusion in adult rats[J]. Journal of Neurotrauma, 2006: 23(11): 16321653.[8]Kani M H H, Derafshian M, Bidgoly H J, et al. Effect of flexible spine on stability of a passive quadruped robot: Experimental results[C]∥ IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ: IEEE Press, 2011: 27932798.[9]Kuehn Daniel, Grimminger Felix, Beinersdorf Frank, et al. Additional DOFs and sensors for BioInspired Locomotion: Towards active spine, ankel jionts, and feet for a quadruped robot[C]∥ IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ: IEEE Press, 2011: 27802786.[10]Miki K, Tsujita K. A study of the effect of structural damping on gait stability in quadrupedal locomotion using a musculoskeletal robot[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE Press, 2012: 19761981. [11]Tsujita K, Miki K. A study on trunk stiffness and gait stability in quadrupedal locomotion using musculoskeletal robot[C] ∥ The 15th International Conference on Advanced Robotics(ICAR). Piscataway, NJ: IEEE Press, 2011: 316321.[12]Tsujita K, Miki K. Stability analysis on quadrupedal gaits according to body’s flexibility using musculoskeletal robot[C]∥ IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ: IEEE Press, 2011: 16091614.[13]Takashi Takuma, Masahiro Ikeda, Tatsuya Masuda. Facilitating multimodal locomotion in a quadruped robot utilizing passive oscillation of the spine structure proceedings[C]∥ IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway, NJ: IEEE Press, 2010: 49404945.[14]Santosha Kumar Dwivedy, Peter Eberhard. Dynamic analysis of flexible manipulators, a literature review [J]. Mechanism and Machine Theory, 2006, 41(7): 749777.[15]洪嘉振,刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008, 42(11): 19221926.HONG Jiazhen, LIU Zhuyong. Modeling methods of rigidflexible coupling dynamics[J]. Journal of Shanghai Jiaotong University, 2008, 42(11): 19221926. |
[1] | 宋深科, 夏立, 邹早建, 邹璐. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928. |
[2] | 王沙沙, 张翔宇, 邱国志, 龚景海. 一种分析膜面在积水荷载作用下响应的数值模型[J]. 上海交通大学学报, 2022, 56(6): 730-738. |
[3] | 孙健, 彭斌, 朱兵国. 无油双涡圈空气涡旋压缩机的数值模拟及试验研究[J]. 上海交通大学学报, 2022, 56(5): 611-621. |
[4] | 唐耿林, 李建军, 李元辉, 张珑耀, 朱文峰. 基于胶层填充的薄板包边成形数值模拟及实验研究[J]. 上海交通大学学报, 2022, 56(4): 523-531. |
[5] | 李元辉, 李建军, 王顺超, 张珑耀, 朱文峰. 铝合金薄板含胶滚压成形工艺建模及实验[J]. 上海交通大学学报, 2022, 56(4): 532-542. |
[6] | 王超, 杨波, 张媛, 郭春雨, 叶礼裕. 冰柱冲击问题的数值仿真分析[J]. 上海交通大学学报, 2022, 56(3): 368-378. |
[7] | 胡金硕, 黄健哲. 共轴双旋翼动力学建模与验证[J]. 上海交通大学学报, 2022, 56(3): 395-402. |
[8] | 高昌昊, 宋文萍, 韩少强, 路宽, 王跃, 叶坤. 空空导弹过失速重新定向技术研究[J]. 空天防御, 2022, 5(3): 17-26. |
[9] | 王 屹. 单点吊装作业视景仿真应用研究[J]. 海洋工程装备与技术, 2022, 9(2): 38-42. |
[10] | 何清波,姜添曦. 人工智能可以通过操纵波来实现吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 1-2. |
[11] | 姚振威. 如何通过拓扑缺陷概念推进对凝聚态物质的理解?[J]. 上海交通大学学报, 2021, 55(Sup.1): 106-107. |
[12] | 张金柯, 缪光武, 金佳敏, 陈银飞, 卢晗锋, 宁文生, 白占旗, 刘武灿. R115/NaX的吸附动力学及其因素显著性分析[J]. 上海交通大学学报, 2021, 55(9): 1071-1079. |
[13] | 李昂, 孙仁. 螺旋列板立管受迫振动时的水动力学研究[J]. 上海交通大学学报, 2021, 55(8): 907-915. |
[14] | 滕亚军, 陈务军, 杨天洋, 敬忠良, 刘物己. SMA弹簧驱动的柔性操控臂动力学分析[J]. 上海交通大学学报, 2021, 55(8): 1018-1026. |
[15] | 张晨雅, 寇雨丰, 吕海宁, 肖龙飞, 刘明月. 经典式Spar平台涡激运动与驰振特性的对比试验[J]. 上海交通大学学报, 2021, 55(5): 497-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||