上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (11): 1639-1643.
陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2
收稿日期:
2014-04-22
基金资助:
国家科技重大专项(2010ZX06004018)资助
CHEN Kai 1,DU Donghai1,LU Hui1,ZHANG Lefu1,SHI Xiuqiang2,XU Xuelian2
Received:
2014-04-22
摘要:
摘要: 采用销加载拉伸方法和直流电压降法测试技术,测量了室温和高温325 ℃空气中3种不同工艺的690合金传热管的疲劳裂纹扩展速率.试验采用ParisErdogan公式进行拟合分析,证明了结果的真实性和可靠性.高温加速了疲劳裂纹扩展.由疲劳裂纹扩展速率曲线可以预测出3种690管材在高温325 ℃下的门槛应力强度因子幅值ΔKth,扫描电子显微镜下观察断口形貌,疲劳裂纹的扩展为穿晶形式,在穿晶断口上观察到明显的疲劳辉纹和微塑性区.
中图分类号:
陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2. 690合金传热管疲劳裂纹扩展研究[J]. 上海交通大学学报(自然版), 2014, 48(11): 1639-1643.
CHEN Kai 1,DU Donghai1,LU Hui1,ZHANG Lefu1,SHI Xiuqiang2,XU Xuelian2. Fatigue Crack Growth of Alloy 690 Tubing[J]. Journal of Shanghai Jiaotong University, 2014, 48(11): 1639-1643.
[1]Young B A, Gao X, Srivatsan T S, et al. An investigation of the fatigue crack growth behavior of INCONEL 690[J]. Materials Science and Engineering: A, 2006, 416(1): 187191.[2]Li X, Wang J, Han E H, et al. Corrosion behavior for Alloy 690 and Alloy 800 tubes in simulated primary water[J]. Corrosion Science, 2013, 67: 169178.[3]Chai G, Liu P, Zhou N, et al. Low and high cycle fatigue behavior of nickelbase alloy at high temperatures[J]. Procedia Engineering, 2013, 55: 671676.[4]MacDonald P E, Shah V N, Ward L W, et al. Steam generator tube failures[R]. Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Programs; Idaho National Engineering Lab., Idaho Falls, ID (United States), 1996.[5]AlRubaie K S, Godefroid L B, Lopes J A M. Statistical modeling of fatigue crack growth rate in Inconel alloy 600[J]. International Journal of Fatigue, 2007, 29(5): 931940.[6]Grigoriev V, Josefsson B, Lind A, et al. A pinloading tension test for evaluation of thinwalled tubular materials[J]. Scripta Metallurgica et Materialia, 1995, 33(1): 109114.[7]Yagnik S, Ramasubramian N, Grigoriev V, et al. RoundRobin testing of fracture toughness characteristics of thinwalled tubing[J]. Journal of ASTM International, 2008, 5(2): 121.[8]Grigoriev V, Jakobsson R. Delayed hydrogen cracking velocity and Jintegral measurements on irradiated BWR cladding[J]. ASTM Special Technical Publication, 2006, 1467: 711.[9]Coleman C, Grigoriev V, Inozemtsev V, et al. Delayed hydride cracking in zircaloy fuel cladding—An IAEA coordinated research programme[J]. Nuclear Engineering and Technology, 2009, 41: 18.[10]Seok C S, Bae B K, Koo J M. DC potential drop method for evaluating material degradation[J]. KSME International Journal, 2004, 18(8): 13681374.[11]Bowler N. Theory of fourpoint directcurrent potential drop measurements on a metal plate[J]. Research in Nondestructive Evaluation, 2006, 17(1): 2948.[12]Merah N. Detecting and measuring flaws using electric potential techniques[J]. Journal of Quality in Maintenance Engineering, 2003, 9(2): 160175.[13]Andresen P L, Morra M M. IGSCC of nonsensitized stainless steels in high temperature water[J]. Journal of Nuclear Materials, 2008, 383(1): 97111.[14]Paris P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528533.[15]ASTM International. Standard Test Method for Measurement of Fatigue Crack Growth Rates[M]. West Conshohocken: ASTM International, 2011. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||