上海交通大学学报(自然版) ›› 2014, Vol. 48 ›› Issue (06): 870-876.
收稿日期:
2013-06-13
基金资助:
国家重点基础研究发展规划(973)项目(2011CB706502)
Received:
2013-06-13
摘要:
中图分类号:
李明,李富才,李鸿光,孟光. 浅裂纹转子特性的动态圣维南原理解释[J]. 上海交通大学学报(自然版), 2014, 48(06): 870-876.
LI Ming,LI Fucai,LI Hongguang,MENG Guang. Dynamical Saint-Venant’s Principle Solution for Rotor System with Shallow Crack[J]. Journal of Shanghai Jiaotong University, 2014, 48(06): 870-876.
[1]朱厚军, 郑艳平, 赵玫. 裂纹转子振动研究的现状与展望[J]. 汽轮机技术, 2001, 43(05): 257261. ZHU Houjun, ZHENG Yanping, ZHAO Mei. Vibration of cracked rotor: A state of the art review [J]. Turbine Technology, 2001, 43(05): 257261. [2]朱厚军, 赵玫, 王德洋. Jeffcott裂纹转子动力特性的研究[J]. 振动与冲击, 2001, 20(01): 14. ZHU Houjun, ZHAO Mei, WANG Deyang. A study on the dynamics of a cracked Jeffcott rotor [J]. Journal of Vibration and Shock, 2001, 20(01): 14. [3]de SaintVenant A J C B. Mémoire sur la flexion des prismes [J]. J de Mathematiques Pures et Appliquées, 1856, 1: 89189. [4]Boley B A. Application of SaintVenant’s principle in dynamical problems [J]. J Appl Mech, 1955, 22(2): 204206. [5]Karp B. Dynamic equivalence, selfequilibrated excitation and SaintVenant's principle for an elastic strip [J]. International Journal of Solids and Structures, 2009, 46(16): 30683077. [6]Boussinesq J. Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques [M]. Paris, France: GauthierVillars, 1885. [7]Love A E H. A treatise on the mathematical theory of elasticity [M]. Cambridge, UK: University Press, 1920. [8]Mises R. On Saint Venant’s principle [J]. Bull Am Math Soc, 1945, 51(8): 555562. [9]Sternberg E. On SaintVenant’s principle [J]. Quart Appl Math, 1954, 11: 393402. [10]Toupin R A. SaintVenant's principle [J]. Archive for Rational Mechanics and Analysis, 1965, 18(2): 8396. [11]Knowles J K. On SaintVenant's principle in the twodimensional linear theory of elasticity [J]. Archive for Rational Mechanics and Analysis, 1966, 21(1): 122. [12]Horgan C O. Recent developments concerning SaintVenant’s principle: An update [J]. Applied Mechanics Reviews, 1989, 42: 295. [13]赵建中. ToupinБердичевский定理不能作为圣维南原理的数学表达[J]. 应用数学和力学, 1986, 7(10): 913916. ZHAO Jianzhong. ToupinBerdichevskii theroem can’t be considered as a mathematical expression of saintVenant’s principle [J]. Applied Mathematics and Mechanics, 1986, 7(10):913916. [14]赵建中. 圣维南原理的一种可能的数学表达[J]. 云南大学学报(自然科学版), 1987, 9(02): 161169. ZHAO Jianzhong. A kind of mathematical expressions possible for SaintVenant’s principle [J]. Journal of Yunan University, 1987, 9(02): 161169. [15]Boley B A. On a dynamical Saint Venant principle [J]. Journal of Applied Mechanics, 1960, 27: 74. [16]Torvik P J. Reflection of wave trains in semiinfinite plates [J]. The Journal of the Acoustical Society of America, 1967, 41: 346. [17]Flavin J N, Knops R J. Some spatial decay estimates in continuum dynamics [J]. Journal of Elasticity, 1987, 17(3): 249264. [18]Boley B A. Some observations on SaintVenant's principle [C]//Proceedings of the 3rd US National Congress of Applied Mechanics. New York, USA: ASME Press, 1957: 259264. [19]Karp B, Dorogoy A, Wang Z. Nonuniform impact excitation of a cylindrical bar [J]. Journal of Sound and Vibration, 2009, 323(3): 757771. [20]Karp B. Dynamic version of SaintVenant's principlehistorical account and recent results [J]. Nonlinear Analysis, 2005, 63(57): e931e942. [21]Karp B, Durban D. SaintVenant’s principle in dynamics of structures [J]. Applied Mechanics Reviews, 2011, 64: 020801120. [22]Papadopoulos C A, Dimarogonas A D. Stability of cracked rotors in the coupled vibration mode [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1987,110: 356359. [23]Gasch R. A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack [J]. Journal of Sound and Vibration, 1993, 160(2): 313332. [24]Sekhar A S. Vibration characteristics of a cracked rotor with two open cracks [J]. Journal of Sound and Vibration, 1999, 223(4): 497512. [25]Meng G. The nonlinear influences of whirl speed on the stability and response of a cracked rotot [J]. Journal of Machine Vibration, 1992, 6(4): 216230. [26]Grabowski B. The vibrational behavior of a turbine rotor containing a transverse crack [J]. Journal of Mechanical Design, 1980, 102: 140146. [27]Mayes I W, Davies W G R. Analysis of the response of a multirotorbearing system containing a transverse crack in a rotor [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1984, 106(1): 139145. [28]Sawicki J T, Gyekenyesi A L, Baaklini G Y. Analysis of transient response of cracked flexible rotor [C]//Proceedings of SPIE. San Diego, CA, USA: SPIE Press, 2004: 142150. [29]冷小磊, 孟光, 张韬,等. 考虑随机扰动时裂纹转子系统的分叉与混沌特性[J]. 振动工程学报, 2006, 19(02): 212218. LENG Xiaolei, MENG Guang, ZHANG Tao, et al. Bifurcation and chaos response of a cracked rotor with random disturbance [J]. Journal of Vibration Engineering, 2006, 19(02): 212218. [30]高建民, 朱晓梅. 转轴上裂纹开闭模型的研究[J]. 应用力学学报, 1992, 9(1): 108112. GAO Jianmin, ZHU Xiaomei. Study on the model of the shaft crack opening and closing [J]. Chinese Journal of Applied Mechanics, 1992, 9(1): 108112. [31]罗斯 J L. 固体中的超声波 [M]. 何存富,吴斌,王秀彦,译. 北京:科学出版社, 2004. [32]Gazis D C. Threedimensional investigation of the propagation of waves in hollow circular cylinders. I. analytical foundation [J]. The Journal of the Acoustical Society of America, 1959, 31:568. |
[1] | 杨振,付庄,管恩广,徐建南,田仕禾,郑辉. MLattice模块机器人的运动学分析及构型优化[J]. 上海交通大学学报(自然版), 2017, 51(10): 1153-1159. |
[2] | 赵君1,余海东2. 基于绝对节点坐标法的柔性双臂机构动力学分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1160-1165. |
[3] | 赵子任1,杜世昌1,黄德林1,任斐2,梁鑫光2. 多工序制造系统暂态阶段产品质量 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报(自然版), 2017, 51(10): 1166-1173. |
[4] | 黄炫圭. 小边概率条件下较小植入团的算法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1202-1206. |
[5] | 罗晶晶a,余海东a,赵春璋a,b,王皓a,b. 基于绝对节点坐标法变截面柔性梁运动稳定性研究[J]. 上海交通大学学报(自然版), 2017, 51(10): 1174-1180. |
[6] | 汪一波1,黄亦翔1,李炳初1,凌晓1,赵帅1,刘成良1,张大庆2. 一种基于静力学预计算的开关磁阻电机模态仿真方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1181-1188. |
[7] | 周炳海,黎明. 考虑机器人约束加工的制造单元调度方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1214-1219. |
[8] | 陈进平1,张树生1,何卫平1,王明微1,黄晖2. 基于驱动参数建模的可行更改路径搜索和优选方法[J]. 上海交通大学学报(自然版), 2017, 51(10): 1220-1227. |
[9] | 周鹏辉,马红占,陈东萍,陈梦月,褚学宁. 基于模糊随机故障模式与影响分析的 产品再设计模块识别[J]. 上海交通大学学报(自然版), 2017, 51(10): 1189-1195. |
[10] | 彭程,朱剑昀,陈俐. 基于模型参考控制的混合动力汽车模式切换 [J]. 上海交通大学学报(自然版), 2017, 51(10): 1196-1201. |
[11] | 柳伟,杨超. 基于反向传播神经网络的注塑模具用零件报价模型[J]. 上海交通大学学报(自然版), 2017, 51(10): 1207-1213. |
[12] | 陈苏婷,王卓,王奇. 基于非线性尺度空间的航拍场景分类[J]. 上海交通大学学报(自然版), 2017, 51(10): 1228-1234. |
[13] | 陈宁,贺小滨,桂卫华,阳春华. 基于混沌离散序列的图像加密算法研究[J]. 上海交通大学学报(自然版), 2017, 51(10): 1273-1280. |
[14] | 刘凯a,张立民b,周立军a. 随机受限玻尔兹曼机组设计[J]. 上海交通大学学报(自然版), 2017, 51(10): 1235-1240. |
[15] | 朱信尧1,宋保维2,徐刚1,杨松林1. 支撑机构驻留水下航行器着陆策略及影响因素[J]. 上海交通大学学报(自然版), 2017, 51(10): 1241-1251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||