[1]Jelali Mohieddine. An overview of control performance assessment technology and industrial applications [J]. Control Engineering Practice, 2006, 14(5): 441466.[2]Qin S J, Badgwell T A. A survey of industrial model predictive control technology [J]. Control Engineering Practice, 2003, 11(7): 733764.[3]Schafer Jochen, Cinar Ali. Multivariate MPC system performance assessment, monitoring and diagnosis [J]. Journal of Process Control, 2004, 14(2):119129.[4]Yu Jie, Qin S J. Statistical MIMO controller performance monitoring, Part I: Datadriven covariance benchmark [J]. Journal of Process Control, 2008, 18(34): 277296.[5]Yu Jie, Qin S J. Statistical MIMO controller performance monitoring, part II: Performance diagnosis [J]. Journal of Process Control, 2008, 18(34): 297316.[6]Alghazzawi A, Lennox B. Model predictive control monitoring using multivariate statistics [J]. Journal of Process Control, 2009, 19(2): 314327.[7]Zhang Qiang, Li Shaoyuan. Performance monitoring and diagnosis of multivariable model predictive control using statistical analysis [J]. Chinese Journal of Chemical Engineering, 2006, 14(2): 207215.[8]Loquasto F, Seborg D E. Monitoring model predictive control systems using pattern classification and neural networks [J]. Industrial and Engineering Chemistry Research, 2003, 42(20): 46894701.[9]Qin S J. Statistical process monitoring: Basics and beyond [J]. Journal of Chemometrics, 2003, 17(89): 480502.[10]Bishop C M. Pattern recognition and machine learning [M]. Cambridge: Springer, 2007:97106.[11]Bishop C M. Pattern recognition and machine learning [M]. Cambridge: Springer, 2007:326338.[12]Zhao Yu, Gu Yong, Su Hongye, et al. Extended prediction error approach for MPC performance monitoring and industrial applications [C]//Proceedings of the 17th IFAC World Congress. Seoul, Korea: DIO, 2008: 1489714899.[13]Chang ChihChung, Lin ChinJen. LIBSVM: A library for support vector machines[CP/OL]. (20101202)[20110128] |