上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (8): 1145-1155.doi: 10.16183/j.cnki.jsjtu.2023.569
收稿日期:
2023-11-10
修回日期:
2023-12-26
接受日期:
2023-12-29
出版日期:
2025-08-28
发布日期:
2025-08-26
通讯作者:
王福新
E-mail:fuxinwang@sjtu.edu.cn
作者简介:
陆晨律(1999—),硕士生,从事飞机结冰研究.
基金资助:
LU Chenlü, WANG Liping, MENG Hangfei, LIU Hong, WANG Fuxin()
Received:
2023-11-10
Revised:
2023-12-26
Accepted:
2023-12-29
Online:
2025-08-28
Published:
2025-08-26
Contact:
WANG Fuxin
E-mail:fuxinwang@sjtu.edu.cn
摘要:
认知过冷水与固体表面接触对冰成核过程的影响对过冷物质储运以及防冰表面设计等工程应用非常关键,而接触面积变化对冰成核的影响尚不明确,尤其是当接触面积较大时.通过改变硅胶管和聚氯乙烯(PVC)纤维增强软管的长度改变过冷水与壁面接触面积的方式,研究了接触面积对结冰温度的影响.实验结果表明,接触面积变化将显著影响过冷水的结冰温度.根据所得变化规律建立了接触面积-过冷度预测模型,并利用实验结果对经典成核理论中的面积项进行了修正.修正后的成核率预测结果与实验中面积增长对成核的影响基本一致,且接触面积对成核率的影响并非目前认为的线性,而呈非线性.研究方法和所提出的模型为未来工程中过冷水的利用以及接触面积变化影响成核过程的进一步研究奠定了良好的基础.
中图分类号:
陆晨律, 王利平, 孟航飞, 刘洪, 王福新. 过冷水-壁面接触面积对冰成核行为影响实验研究[J]. 上海交通大学学报, 2025, 59(8): 1145-1155.
LU Chenlü, WANG Liping, MENG Hangfei, LIU Hong, WANG Fuxin. Ice Nucleation Behavior in Supercooled Water with Varying Wall Contact Area[J]. Journal of Shanghai Jiao Tong University, 2025, 59(8): 1145-1155.
[1] | ROSENFELD D, WOODLEY W L. Deep convective clouds with sustained supercooled liquid water down to -37.5 ℃[J]. Nature, 2000, 405(6785): 440-442. |
[2] | KALIKMANOV V I. Nucleation theory[M]. Dordrecht, Netherlands: Springer Netherlands, 2013. |
[3] | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681. |
[4] |
HUANG H, YARMUSH M L, USTA O B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids[J]. Nature Communications, 2018, 9(1): 3201-3210.
doi: 10.1038/s41467-018-05636-0 pmid: 30097570 |
[5] | LIU D, XU C, GUO C, et al. Sub-zero temperature preservation of fruits and vegetables: A review[J]. Journal of Food Engineering, 2020, 275: 109881. |
[6] | HU R, ZHANG C, ZHANG X, et al. Research status of supercooled water ice making: A review[J]. Journal of Molecular Liquids, 2022, 347: 118334. |
[7] |
IRAJIZAD P, NAZIFI S, GHASEMI H. Icephobic surfaces: Definition and figures of merit[J]. Advances in Colloid and Interface Science, 2019, 269: 203-218.
doi: S0001-8686(18)30331-2 pmid: 31096074 |
[8] | SHAMSEDDINE I, PENNEC F, BIWOLE P, et al. Supercooling of phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112172. |
[9] |
ANDERSON M W, BENNETT M, CEDENO R, et al. Understanding crystal nucleation mechanisms: Where do we stand? General discussion[J]. Faraday Discuss, 2022, 235: 219-272.
doi: 10.1039/d2fd90021a pmid: 35789238 |
[10] | POWELL-PALM M J, KOH-BELL A, RUBINSKY B. Isochoric conditions enhance stability of metastable supercooled water[J]. Applied Physics Letters, 2020, 116(12): 123702. |
[11] | WANG L, KONG W, WANG F, et al. Temperature-gradient effects on heterogeneous ice nucleation from supercooled water[J]. AIP Advances, 2019, 9(12): 125122. |
[12] | WANG L, KONG W, BIAN P, et al. Suppression of ice nucleation in supercooled water under temperature gradients[J]. Chinese Physics B, 2021, 30(6): 068203. |
[13] | SAITO A, OKAWA S, TOJIKI A, et al. Fundamental research on external factors affecting the freezing of supercooled water[J]. International Journal of Heat and Mass Transfer, 1992, 35(10): 2527-2536. |
[14] | DALVI-ISFAHAN M, HAMDAMI N, XANTHAKIS E, et al. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields[J]. Journal of Food Engineering, 2017, 195: 222-234. |
[15] | GUERREIRO B M, CONSIGLIO A N, RUBINSKY B, et al. Enhanced control over ice nucleation stochasticity using a carbohydrate polymer cryoprotectant[J]. ACS Biomaterials Science & Engineering, 2022, 8(5): 1852-1859. |
[16] | WANG L, WANG F, LU C, et al. Nucleation in supercooled water triggered by mechanical impact: Experimental and theoretical analyses[J]. Journal of Energy Storage, 2022, 52: 104755. |
[17] |
ZHANG Z, LIU X Y. Control of ice nucleation: Freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116-7139.
doi: 10.1039/c8cs00626a pmid: 30137078 |
[18] |
LIU Y, MOEVIUS L, XU X, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7): 515-519.
doi: 10.1038/nphys2980 pmid: 28553363 |
[19] | PRUPPACHER H R, KLETT J D. Microphysics of clouds and precipitation[M]. 2nd ed. Dordrecht, Netherlands: Springer Netherlands, 2010. |
[20] |
ICKES L, WELTI A, HOOSE C, et al. Classical nucleation theory of homogeneous freezing of water: Thermodynamic and kinetic parameters[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5514-5537.
doi: 10.1039/c4cp04184d pmid: 25627933 |
[21] | ZHANG X, LIU X, WU X, et al. Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets[J]. Experimental Thermal and Fluid Science, 2018, 99: 26-34. |
[22] | INADA T, TOMITA H, KOYAMA T. Ice nucleation in water droplets on glass surfaces: From micro-to macro-scale[J]. International Journal of Refrigeration, 2014, 40: 294-301. |
[23] | ALTOHAMY A A, ELSEMARY I M M, ABDO S, et al. Encapsulation surface roughness effect on the performance of cool storage systems[J]. Journal of Energy Storage, 2020, 28: 101279. |
[24] | 王利平. 面向飞机结冰环境模拟的过冷大水滴可控发生原理研究[D]. 上海: 上海交通大学, 2021. |
WANG Liping. The principle of controllable generation of supercooled large water droplets for simulation of aircraft icing conditions[D]. Shanghai: Shanghai Jiao Tong University, 2021. | |
[25] |
LI K, XU S, SHI W, et al. Investigating the effects of solid surfaces on ice nucleation[J]. Langmuir, 2012, 28(29): 10749-10754.
doi: 10.1021/la3014915 pmid: 22741592 |
[26] |
FU Q T, LIU E J, WILSON P, et al. Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness[J]. Physical Chemistry Chemical Physics, 2015, 17(33): 21492-21500.
doi: 10.1039/c5cp03243a pmid: 26220055 |
[27] | GURGANUS C, KOSTINSKI A B, SHAW R A. Fast imaging of freezing drops: No preference for nucleation at the contact line[J]. The Journal of Physical Chemistry Letters, 2011, 2(12): 1449-1454. |
[28] | KAR A, BHATI A, LOKANATHAN M, et al. Faster nucleation of ice at the three-phase contact line: Influence of interfacial chemistry[J]. Langmuir, 2021, 37(43): 12673-12680. |
[29] | YUDONG L, JIANGQING W, CHUANGJIAN S, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids[J]. Applied Thermal Engineering, 2017, 115: 1226-1236. |
[30] | YOUNG S W, VAN SICKLEN W J. The mechanical stimulus to crystallization[J]. Journal of the American Chemical Society, 1913, 35(9): 1067-1078. |
[31] |
SHARDT N, ISENRICH F N, WASER B, et al. Homogeneous freezing of water droplets for different volumes and cooling rates[J]. Physical Chemistry Chemical Physics, 2022, 24(46): 28213-28221.
doi: 10.1039/d2cp03896j pmid: 36413087 |
[32] | SEELEY L H, SEIDLER G T. Two-dimensional nucleation of ice from supercooled water[J]. Physical Review Letters, 2001, 87(5): 055702. |
[33] |
EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9): 4874-4881.
doi: 10.1039/c3nr06644d pmid: 24667802 |
[34] | JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3(1): 615. |
[35] | ZOBRIST B, KOOP T, LUO B P, et al. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer[J]. The Journal of Physical Chemistry C, 2007, 111(5): 2149-2155. |
[36] | COOPER S J, NICHOLSON C E, LIU J. A simple classical model for predicting onset crystallization temperatures on curved substrates and its implications for phase transitions in confined volumes[J]. The Journal of Chemical Physics, 2008, 129(12): 124715. |
[37] | NIEDERMEIER D, SHAW R A, HARTMANN S, et al. Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8767-8775. |
[38] |
FITZNER M, PEDEVILLA P, MICHAELIDES A. Predicting heterogeneous ice nucleation with a data-driven approach[J]. Nature Communications, 2020, 11(1): 4777.
doi: 10.1038/s41467-020-18605-3 pmid: 32963232 |
[39] |
SOSSO G C, CHEN J, COX S J, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations[J]. Chemical Reviews, 2016, 116(12): 7078-7116.
doi: 10.1021/acs.chemrev.5b00744 pmid: 27228560 |
[1] | 张小威, 李凡, 郭叶, 杨扬, 张励. 基于实测数据转换的红外场景修正方法[J]. 空天防御, 2019, 2(2): 62-67. |
[2] | 沈佳瑛,孔维梁,刘洪. 壁面表面能影响冰枝尖端生长机制研究[J]. 上海交通大学学报, 2018, 52(8): 918-923. |
[3] | 李冬1,张辰1,王福新1,刘洪1,杨坤2. 多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报, 2017, 51(8): 921-931. |
[4] | 于新,连之伟,陈建萍,潘黎,王月梅. 圆柱源综合修正模型 [J]. 上海交通大学学报(自然版), 2010, 44(10): 1337-1341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||