上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (7): 1050-1058.doi: 10.16183/j.cnki.jsjtu.2023.456

• 材料科学与工程 • 上一篇    

锐钛矿TiO2-x (101)表面硝酸根还原路径的第一性原理计算

贺曦煜, 杨帆(), 章俊良   

  1. 上海交通大学 机械与动力工程学院,上海 200240
  • 收稿日期:2023-09-11 修回日期:2023-10-27 接受日期:2023-11-17 出版日期:2025-07-28 发布日期:2025-07-22
  • 通讯作者: 杨帆 E-mail:fanyang_0123@sjtu.edu.cn
  • 作者简介:贺曦煜(1999—),硕士生,从事电催化材料的第一性原理研究.
  • 基金资助:
    国家自然科学基金(52374391)

First-Principle Investigation of Reaction Pathways for Nitrate Reduction on (101) Surface of Anatase TiO2

HE Xiyu, YANG Fan(), ZHANG Junliang   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-09-11 Revised:2023-10-27 Accepted:2023-11-17 Online:2025-07-28 Published:2025-07-22
  • Contact: YANG Fan E-mail:fanyang_0123@sjtu.edu.cn

摘要:

为研究硝酸根在锐钛矿TiO2-x(101)表面的还原过程,建立有无氧空位两种表面模型,采用密度泛函理论对硝酸根在两种表面的还原过程进行理论计算,研究氧空位对表面电子结构、硝酸根吸附构型以其吸附能、还原路径、竞争反应和产物选择性的影响.结果表明:氧空位改变硝酸根在表面的吸附构型,显著降低其吸附能,并将电位决定步由硝酸根吸附转变为N原子的氢化过程.此外,氧空位能够大幅提高中间体NO2和NO的脱附能,从而抑制副产物的产生,改善催化剂选择性.氧空位对竞争性析氢反应的促进作用远不及对硝酸根还原反应的促进程度,因此含氧空位的TiO2是电催化硝酸根还原产氨的潜在优异催化剂.

关键词: TiO2, 氧空位, 硝酸根还原, 电催化, 第一性原理计算

Abstract:

To understand the nitrate reduction process on the (101) surface of anatase TiO2-x, two surface models one with oxygen vacancies and one without are established. Density functional theory calculations are then employed to reveal the effects of oxygen vacancy on the surface electronic structure, nitrate adsorption configuration and energy, reduction pathways, competitive reactions, and product selectivity. The results show that oxygen vacanies alter the adsorption configuration and significantly reduce the nitrate adsorption energy on the surface, and shift the potential determining step from nitrate adsorption to the subsequent hydrogenation processes. In addition, oxygen vacancies dramatically increase the desorption energy of intermediates such as NO2 and NO, thus inhibiting the formation of by-products and improving electrocatalytic selectivity. The promotion of the competitive hydrogen evolution reaction by oxygen vacancies is far less pronounced compared to that of nitrate reduction reaction. Therefore, oxygen deficient TiO2-x emerges as a promising catalyst for electro-catalyzing nitrate reduction to produce ammonia.

Key words: TiO2, oxygen vacancy, nitrate reduction reaction, electrocatalysis, first-principle calculation

中图分类号: