上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 691-702.doi: 10.16183/j.cnki.jsjtu.2023.276

• 机械与动力工程 • 上一篇    下一篇

基于自适应阈值的型钢精确角点FAST检测算法

包家汉, 孙德尚, 黄建中(), 胡政   

  1. 安徽工业大学 机械工程学院,安徽 马鞍山 243032
  • 收稿日期:2023-06-28 修回日期:2023-08-25 接受日期:2023-09-18 出版日期:2025-05-28 发布日期:2025-06-05
  • 通讯作者: 黄建中,讲师;E-mail:13955586254@139.com.
  • 作者简介:包家汉(1971—),教授,主要从事智能检测与精密测量研究.

FAST Algorithm for Accurate Corner Points Detection of Section Steel Based on Adaptive Threshold

BAO Jiahan, SUN Deshang, HUANG Jianzhong(), HU Zheng   

  1. School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
  • Received:2023-06-28 Revised:2023-08-25 Accepted:2023-09-18 Online:2025-05-28 Published:2025-06-05

摘要:

基于机器视觉的在线型钢平直度检测中,对型钢图像关键角点快速、准确地提取是实现精确检测的关键技术问题.针对加速分割检验特征提取(FAST)算法需要人工设定角点筛选阈值和角点提取存在大量伪角点的问题,提出一种自适应阈值生成及校正策略,能够在自动获取初始阈值的基础上,根据角点数是否达到初始角点集要求对阈值实时校正直至达到适当值,以减少关键角点遗漏.在采用FAST提取角点的基础上,利用最小核心值相似区域(SUSAN)算法剔除伪角点,以保证关键角点提取的有效性.试验证明,这种基于自适应阈值的FAST角点检测算法(FAST-A),在检测环境和对象特性发生变化时,仍然可以准确、快速地检测到型钢关键角点,在为型钢平直度检测实时提供精确角点的基础上,提高角点提取的自适应性.

关键词: 型钢, 角点检测, 加速分割检验特征提取算法, 最小核心值相似区域算法, 自适应阈值

Abstract:

The on-line flatness detection of section steel based on machine vision is a key technical problem for quickly and accurately extracting key corner points from section steel images to enable accurate detection. Aiming at the problem that the features from accelerated segment test (FAST) algorithm needs to manually set the corner points screening threshold and there are numerous false corner points in corner point extraction, this paper proposes an adaptive threshold generation and correction strategy. Based on the automatic determination of the initial threshold, this strategy can adjust the threshold in real time until an appropriate value is reached according to the requirements of the initial corner points set, thereby to reduce the risk of missing key corner points. In addition to using FAST algorithm to extract corner points, the smallest univalue segment assimilating nucleus (SUSAN) algorithm is employed to eliminate false corner points ensuring the effectiveness of key corner points extraction. The experiments prove that the FAST corner detection algorithm based on adaptive threshold (FAST-A) can still accurately and quickly detect key corner points even when the detection environment and object characteristics change. Furthermore, the algorithm proposed provides accurate corner points for real-time section steel flatness detection, and improves the adaptability of corner points extraction.

Key words: section steel, corner points detection, features from accelerated segment test (FAST) algorithm, smallest univalue segment assimilating nucleus (SUSAN) algorithm, adaptive threshold

中图分类号: