上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (9): 1465-1478.doi: 10.16183/j.cnki.jsjtu.2023.030
• 新型电力系统与综合能源 • 上一篇
收稿日期:
2023-02-01
修回日期:
2023-05-10
接受日期:
2023-05-26
出版日期:
2024-09-28
发布日期:
2024-10-11
通讯作者:
韩一鸣,讲师;E-mail:2451250809@qq.com.
作者简介:
杨 博(1988—),教授,博士生导师,从事基于人工智能的新能源系统优化与控制研究.
基金资助:
YANG Bo, LIU Bingqiang, CHEN Yijun, WU Shaocong, SHU Hongchun, HAN Yiming()
Received:
2023-02-01
Revised:
2023-05-10
Accepted:
2023-05-26
Online:
2024-09-28
Published:
2024-10-11
摘要:
针对波浪能转换器(WEC)阵列发电效率提升问题,提出一种基于改进蜜獾算法的三系WEC阵列优化方法.首先,为克服原始蜜獾算法(HBA)收敛速度慢、收敛精度低等缺陷,引入佳点集初始化、混沌机制和蜜獾种群变异3种策略对原始HBA进行改进.此外,为了验证改进蜜獾算法(IHBA)的先进性和有效性,开展2个浮标、10个浮标和20个浮标3个不同规模的WEC阵列优化实验.2浮标阵列仿真结果表明,WEC阵列优化存在多组最优解,且IHBA、HBA、遗传算法和粒子群优化算法都能以不同速度找到最优解.然而,随着WEC阵列规模的增大,3种对比算法都会陷入局部最优解.相反地,IHBA依然表现出较强寻优能力并能搜寻到全局最优解.最后,IHBA所获10浮标和20浮标的阵列q因子分别高达1.059和0.968,远优于其他3种算法.
中图分类号:
杨博, 刘炳强, 陈义军, 武少聪, 束洪春, 韩一鸣. 基于改进蜜獾算法的波能转换器阵列优化[J]. 上海交通大学学报, 2024, 58(9): 1465-1478.
YANG Bo, LIU Bingqiang, CHEN Yijun, WU Shaocong, SHU Hongchun, HAN Yiming. Array Optimization of Wave Energy Converters via Improved Honey Badger Algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1465-1478.
表4
1F波下各算法优化后的2浮标阵列实验结果
算法 | i | X/m | Y/m | Pi/W | PΣ/W | qi | q |
---|---|---|---|---|---|---|---|
IHBA | 1 | 80 | 9 | 577830.38 | 1158261.22 | 1.04 | 1.043 |
2 | 80 | 100 | 577830.38 | 1.04 | |||
HBA | 1 | 63 | 8 | 579130.61 | 1155660.76 | 1.04 | 1.042 |
2 | 63 | 96 | 579130.61 | 1.04 | |||
GA | 1 | 100 | 100 | 577830.39 | 1155660.78 | 1.04 | 1.042 |
2 | 100 | 9 | 577830.39 | 1.04 | |||
PSO | 1 | 96 | 98 | 577830.41 | 1155660.82 | 1.04 | 1.042 |
2 | 96 | 7 | 577830.41 | 1.04 |
[1] | CHEN Y J, YANG B, GUO Z X, et al. Dynamic reconfiguration for TEG systems under heterogeneous temperature distribution via adaptive coordinated seeker[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 1-19. |
[2] | YANG B, LIU B Q, ZHOU H Y, et al. A critical survey of technologies of large offshore wind farm integration: Summary, advances, and perspectives[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 17. |
[3] | YANG B, WU S C, ZHANG H, et al. Wave energy converter array layout optimization: A critical and comprehensive overview[J]. Renewable & Sustainable Energy Reviews, 2022, 167: 112668. |
[4] | SIM J, KIM C S. The value of renewable energy research and development investments with default consideration[J]. Renewable Energy, 2019, 143: 530-539. |
[5] | FANG H W, WANG D. Design of permanent magnet synchronous generators for wave power generation[J]. Transactions of Tianjin University, 2016, 22(5): 396-402. |
[6] | 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47. |
WU Mingdong, SHENG Songwei, ZHANG Yaqun, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New & Renewable Energy, 2021, 9(1): 42-47. | |
[7] | 谭美秀, 盛松伟, 王振鹏, 等. 冲击水轮机式小型波浪能转换系统研究[J]. 太阳能学报, 2021, 42(9): 446-451. |
TAN Meixiu, SHENG Songwei, WANG Zhenpeng, et al. Research on small wave energy converter system of pelton turbine[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 446-451. | |
[8] | 史宏达, 曲娜, 曹飞飞, 等. 振荡浮子波能发电装置浮子运动性能的试验研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(6): 124-130. |
SHI Hongda, QU Na, CAO Feifei, et al. Experimental study on movement performance of oscillating buoys WEC[J]. Periodical of Ocean University of China, 2017, 47(6): 124-130. | |
[9] | 黄磊, 胡敏强, 余海涛, 等. 直驱式波浪发电用全超导初级励磁直线发电机的设计与分析[J]. 电工技术学报, 2015, 30(2): 80-86. |
HUANG Lei, HU Minqiang, YU Haitao, et al. Design and analysis of a fully-superconducting primary-excitation linear generator for direct-driven wave energy generation[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 80-86. | |
[10] | O’SULLIVAN A C M, SHENG W N, LIGHTBODY G. An analysis of the potential benefits of centralised predictive control for optimal electrical power generation from wave energy arrays[J]. IEEE Transactions on Sustainable Energy, 2018, 9(4): 1761-1771. |
[11] | 陈佳, 兰飞, 郭昊霖, 等. 波浪能发电控制技术研究综述[J]. 电力自动化设备, 2023, 43(6): 124-136. |
CHEN Jia, LAN Fei, GUO Haolin, et al. Review of wave energy power generation control technology research[J]. Electric Power Automation Equipment, 2023, 43(6): 124-136. | |
[12] |
刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58.
doi: 10.12067/ATEEE1909007 |
LIU Huabing, PENG Aiwu, ZHAO Lingzhi. Summary of power control methods for wave power generation system[J]. Advanced Technology of Electrical Engineering & Energy, 2020, 39(5): 49-58. | |
[13] | WU J H, SHEKH S, SERGIIENKO N Y, et al. Fast and effective optimisation of arrays of submerged wave energy converters[C]//Proceedings of the Genetic and Evolutionary Computation Conference 2016. Denver, USA: ACM, 2016: 1045-1052. |
[14] | SHARP C, DUPONT B. Wave energy converter array optimization: A genetic algorithm approach and minimum separation distance study[J]. Ocean Engineering, 2018, 163: 148-156. |
[15] | BABARIT A. On the park effect in arrays of oscillating wave energy converters[J]. Renewable Energy, 2013, 58: 68-78. |
[16] | NESHAT M, MIRJALILI S, SERGIIENKO N Y, et al. Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia[J]. Energy, 2022, 239: 122463. |
[17] | BUDAL K. Theory for absorption of wave power by a system of interacting bodies[J]. Journal of Ship Research, 1977, 21(4): 248-254. |
[18] | CHILD B F M, VENUGOPAL V. Optimal configurations of wave energy device arrays[J]. Ocean Engineering, 2010, 37(16): 1402-1417. |
[19] | SARKAR D, CONTAL E, VAYATIS N, et al. Prediction and optimization of wave energy converter arrays using a machine learning approach[J]. Renewable Energy, 2016, 97: 504-517. |
[20] | 方红伟, 宋如楠, 冯郁竹, 等. 基于差分进化的波浪能转换装置阵列优化[J]. 电工技术学报, 2019, 34(12): 2597-2605. |
FANG Hongwei, SONG Runan, FENG Yuzhu, et al. Array optimization of wave energy converters by differential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2597-2605. | |
[21] |
马宏达, 邓义斌, 郭强波. 基于遗传算法的二自由度波浪能装置阵列优化[J]. 太阳能学报, 2022, 43(6): 264-269.
doi: 10.19912/j.0254-0096.tynxb.2020-1067 |
MA Hongda, DENG Yibin, GUO Qiangbo. Optimization of 2-dof wave energy converters array based on genetic algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 264-269.
doi: 10.19912/j.0254-0096.tynxb.2020-1067 |
|
[22] | HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey badger algorithm: New metaheuristic algorithm for solving optimization problems[J]. Mathematics & Computers in Simulation, 2022, 192: 84-110. |
[23] | HAN E F, GHADIMI N. Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm[J]. Sustainable Energy Technologies & Assessments, 2022, 52: 102005. |
[24] | 董海, 林国栋. 基于改进HBA算法的生鲜闭环供应链网络鲁棒优化设计[J]. 计算机应用研究, 2022, 39(10): 3020-3025. |
DONG Hai, LIN Guodong. Robust optimization design of fresh closed-loop supply chain network based on improved honey badger algorithm[J]. Application Research of Computers, 2022, 39(10): 3020-3025. | |
[25] | NASSEF A M, HOUSSEIN E H, HELMY B E D, et al. Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization[J]. Energy, 2022, 254: 124363. |
[26] | BABU T S, RAM J P, DRAGIČEVIĆ T, et al. Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions[J]. IEEE Transactions on Sustainable Energy, 2018, 9(1): 74-85. |
[27] | SERGIIENKO N Y, CAZZOLATO B S, DING B, et al. An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter[J]. Renewable Energy, 2016, 93: 27-37. |
[28] | WU G X. Radiation and diffraction by a submerged sphere advancing in water waves of finite depth[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical & Engineering Sciences, 1995, 448(1932): 29-54. |
[29] | HEMER M A, GRIFFIN D A. The wave energy resource along Australia’s Southern margin[J]. Journal of Renewable & Sustainable Energy, 2010, 2(4): 043108. |
[30] |
张海南, 游晓明, 刘升. 动态进化与交互学习机制融合的蚁群算法[J]. 信息与控制, 2020, 49(3): 297-305.
doi: 10.13976/j.cnki.xk.2020.9322 |
ZHANG Hainan, YOU Xiaoming, LIU Sheng. Ant colony algorithm based on dynamic evolution and interactive learning mechanism[J]. Information & Control, 2020, 49(3): 297-305. |
[1] | 刘飞, 车琰瑛, 田旭, 许德操, 周慧洁, 李知艺. 新型电力系统下的抽水蓄能电站成本疏导机制:综述与展望[J]. 上海交通大学学报, 2023, 57(7): 757-768. |
[2] | 黄强, 郭怿, 江建华, 明波. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
[3] | 李扬, 张显涛, 肖龙飞. 自适应双稳态浮子式波浪能发电装置在不规则波中的参数控制(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||